
ThinkGear SDK for .NET: Development
Guide and API Reference
May 30, 2013

e NeuroSky® product families consist of hardware and
software components for simple integration of this biosensor
technology into consumer and industrial end-applications.
All products are designed andmanufactured tomeet consumer
thresholds for quality, pricing, and feature sets. NeuroSky
sets itself apart by providing building block component
solutions that offer friendly synergies with related and complemen-
tary technological solutions.

NOWARRANTIES: THENEUROSKYPRODUCTFAMILIES
AND RELATED DOCUMENTATION IS PROVIDED "AS
IS"WITHOUTANY EXPRESSOR IMPLIEDWARRANTY
OFANYKINDINCLUDINGWARRANTIESOFMERCHANTABIL-
ITY,NONINFRINGEMENTOF INTELLECTUALPROPERTY,
INCLUDINGPATENTS,COPYRIGHTSOROTHERWISE,
OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO
EVENTSHALLNEUROSKYOR ITS SUPPLIERSBELIABLE
FORANYDAMAGESWHATSOEVER (INCLUDING,WITHOUT
LIMITATION,DAMAGESFORLOSSOFPROFITS, BUSINESS
INTERRUPTION,COSTOFREPLACEMENTGOODSOR
LOSSOFORDAMAGETOINFORMATION)ARISINGOUT
OFTHEUSEOFOR INABILITYTOUSETHENEUROSKY
PRODUCTS ORDOCUMENTATION PROVIDED, EVEN
IF NEUROSKY HAS BEEN ADVISED OF THE POSSIBIL-
ITYOFSUCHDAMAGES. , SOMEOFTHEABOVELIMITATIONS
MAY NOT APPLY TO YOU BECAUSE SOME JURISDIC-
TIONS PROHIBIT THE EXCLUSION OR LIMITATION
OFLIABILITYFORCONSEQUENTIALOR INCIDENTAL
DAMAGES.

USAGE OF THE NEUROSKY PRODUCTS IS SUBJECT
OF AN END-USER LICENSE AGREEMENT.

“Made for iPod,” “Made for iPhone,” and “Made for
iPad”mean that an electronic accessory has been designed
to connect specifically to iPod, iPhone, or iPad, respectively,
and has been certified by the developer to meet Apple
performance standards. Apple is not responsible for
the operation of this device or its compliancewith safety
and regulatory standards. Please note that the use of
this accessory with iPod, iPhone, or iPad may affect
wireless performance.

Contents

Introduction 4
inkGear SDK for .NET Contents . 4
Supported inkGear Hardware . 4

Your First Project: HelloEEG console 6

Developing Your OwninkGear-enabled Apps for .NET 8
Preparing Your .NET Project . 8
e inkGear.dll . 8
e NeuroSky.inkGear Namespace . 8
Using the NeuroSky.inkGear Namespace . 8
Events . 10

Tips on using inkGear.NET . 11

API Reference 12
Connector class . 12

Methods . 12
Events . 13

TGParser Class . 13
Methods . 14
Detailed Descriptions . 15

inkGear Data Types 16
General . 16

POOR_SIGNAL/SENSOR_STATUS . 16
RAW_DATA . 17
RAW_MULTI . 17

EEG . 17
ATTENTION . 17
MEDITATION . 17
ZONE . 18
BLINK . 18
EEG_POWER . 19
THINKCAP_RAW . 19
POSITIVITY . 20
FAMILIARITY . 20
MENTAL EFFORT . 21

ECG/EKG . 23
HeartRate . 23
Smoothed Heart Rate . 23
Heart Rate Acceleration . 24
Target Heart Rate for Physical Training . 24
Heart Fitness Level . 25
RELAXATION . 26
Respiratory Rate . 26
Heart Risk Awareness . 27
HEART_AGE . 29

May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.
3

http://www.neurosky.com

Chapter 0 –

Personalization . 30
RrInt . 32

Proper App Design 33

Troubleshooting 34

Important Notices 35

May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.
4

http://www.neurosky.com

Chapter 1

Introduction

is guide will teach you how to use NeuroSky'sinkGear SDK for .NET to write Windows apps
that can utilize bio-signal data from NeuroSky's inkGear family of bio-sensors (which includes the
CardioChip family of products). is will enable your Windows apps to receive and use bio-signal
data such as EEG and ECG/EKG acquired from NeuroSky's sensor hardware.

is guide (and the entire inkGear SDK for .NET for that matter) is intended for programmers
who are already familiar with standard .NET development using Microsoft Visual Studio. If you are
not already familiar with developing for .NET, please ërst visit http://www.microsoft.com/net to learn
how to set up your .NET development environment and create typical .NET apps.

If you are already familiar with creating typical .NET apps, then the next step is to make sure you have
downloaded NeuroSky's inkGear SDK for .NET. Chances are, if you're reading this document,
then you already have it.

ThinkGear SDK for .NET Contents

• inkGear SDK for .NET: Development Guide and API Reference (this document)

• libs/:

– inkGear.dll library

– JayrockJson.dll supporting library

– NLog.dll supporting library

– NLog.xml and NLog.coníg conëguration ëles

• TG-HelloEEG.exe - a reference build of the HelloEEG sample project

• HelloEEG Sample Project source code

You'll ënd the .dll, conëguration ëles and 3rd party license documents in the libs/ folder. Copy this
entire folder into your project.

You'll ënd the source code of the "HelloEEG Sample Project" in the Sample Projects/HelloEEG
folder.

Supported ThinkGear Hardware

e inkGear SDK for .NET must be used with a inkGear-compatible hardware sensor device.
e following inkGear-compatible hardware devices are currently supported:

• MindWave Mobile

• MindWave (RF)

May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.
5

http://www.microsoft.com/net
http://www.neurosky.com

Chapter 1 – Introduction

• MindBand

• MindSet

• inkCap

• CardioChip Starter Kit Unit

• TGAM module

• CardioChip BMD101 module

• TGAT ASIC

• BMD101 ASIC

Important: Before using any Windows app that uses the TG-SDK for .NET, make sure you have
paired the inkGear sensor hardware to your Windows machine by carefully following the instruc-
tions in the User Manual that came with each inkGear hardware device! e inkGear sensor
must appear in your Windows machine's list of COM ports in Device Manager.

Supported ThinkGear Hardware
May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.

6

http://www.neurosky.com

Chapter 2

Your First Project: HelloEEG
console
HelloEEG is a sample project we've included in the inkGear SDK for .NET that demonstrates
how to setup, connect, and handle data to a inkGear device. Add the project to your Visual Studio
by following these steps:

1. from the Visual Studio Toolbar, select File—> New —> Project From Existing Code…

2. In the New Project From Existing Code wizard, select the project type of "Visual C#"

3. click the "Next >" button

4. browse to the place you have expanded the SDK ëles. ("inkGear SDK for .NET\Sample
Projects\HelloEEG")

5. check the box to include subfolders.

6. enter a name of "HelloEEG"

7. choose Output type of "Console Application"

8. click the "Finish" button

9. at the Toolbar select Project —> HelloEEG Properties…

10. change the Assembly name to HelloEEG

11. set the Target framework to ".NET Framework 3.5"

12. if you are asked to Conërm the Framework change, click "Yes"

13. at the Toolbar select View —> Solution Explorer

14. in the Solution Explorer pane select and expand the "References" section

15. if you see a exclamation mark warning on "Microsoft.CSharp"

16. select it and right click, and remove the reference to "Microsoft.CSharp"

17. select the "References" section, right click, pick "Add Reference.."

18. choose the browse TAB, choose the folder "neurosky" and then pick "inkGear.dll"

19. at the Toolbar select Build —> Build Solution

20. if there are no errors, you should be able to browse the code, make modiëcations, compile, and
run the app just like any typical .NET app.

Note: ese steps have been tested with Visual Studio 2010, if yours is different you may have to
adapt these instructions.

May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.
7

http://www.neurosky.com

Chapter 2 – Your First Project: HelloEEG console

Note: e TG-HelloEEG.exe reference program is built from these same sources and with the same
process. It is slightly different in that the Microsoft ILMerge program has been used to incorporate
the dlls from the /neuosky folder into the .exe so that it can function in a more standalone way.

May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.
8

http://www.neurosky.com

Chapter 3

Developing Your Own
ThinkGear-enabled Apps for .NET

Preparing Your .NET Project

einkGear .NET SDK's API is made available to your application via the NeuroSky.ThinkGear
namespace. e inkGear.dll gives your .NET application access to the NeuroSky.ThinkGear
namespace.

The ThinkGear.dll

To start with, add theinkGear.dll ële to your .NET application's project workspace. einkGear.dll
is a C# .NET library, and can only be used as part of .NET projects (it will not work in native projects).
is .dll contains the NeuroSky.ThinkGear namespace.

The NeuroSky.ThinkGear Namespace

einkGear .NET SDK's API is made available to your application via the NeuroSky.ThinkGear
namespace. Once you have added the inkGear.dll ële to your project, you can then add the fol-
lowing code to the top of your application to access the NeuroSky.ThinkGear namespace:

using NeuroSky.ThinkGear;

Using the NeuroSky.ThinkGear Namespace

e NeuroSky.ThinkGear namespace consists of two classes:

• Connector - Connects to the computer's serial COM port and reads in the port's serial stream
of data as DataRowArrays.

• TGParser - Parses a DataRowArray into recognizable inkGear Data Types that your applica-
tion can use.

To use the classes, ërst declare a Connector instance and initialize it:

private Connector connector;
connector = new Connector();

Next, create EventHandlers to handle each type of Connector Event, and link those handlers to the
Connector events.

May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.
9

http://www.neurosky.com

Chapter 3 – Developing Your Own ThinkGear-enabled Apps for .NET

connector.DeviceConnected += new EventHandler(OnDeviceConnected);
connector.DeviceFound += new EventHandler(OnDeviceFound);
connector.DeviceNotFound += new EventHandler(OnDeviceNotFound);
connector.DeviceConnectFail += new EventHandler(OnDeviceNotFound);
connector.DeviceDisconnected += new EventHandler(OnDeviceDisconnected);
connector.DeviceValidating += new EventHandler(OnDeviceValidating);

In the handler for the DeviceConnected event, you should create another EventHandler to handle
DataReceived events from the Device, like this:

void OnDeviceConnected(object sender, EventArgs e) {

Connector.DeviceEventArgs deviceEventArgs = (Connector.DeviceEventArgs)e;
Console.WriteLine("New Headset Created." + deviceEventArgs.Device.DevicePortName);

deviceEventArgs.Device.DataReceived += new EventHandler(OnDataReceived);
}

Now, whenever data is received from the device, the DataReceived handler will process that data.
Here is an example OnDeviceReceived() that shows how it can do this, using a TGParser to parse
the DataRow[]:

void OnDataReceived(object sender, EventArgs e){

/* Cast the event sender as a Device object, and e as the Device's DataEventArgs */
Device d = (Device)sender;
Device.DataEventArgs de = (Device.DataEventArgs)e;

/* Create a TGParser to parse the Device's DataRowArray[] */
TGParser tgParser = new TGParser();
tgParser.Read(de.DataRowArray);

/* Loop through parsed data TGParser for its parsed data... */
for(int i=0; i<tgParser.ParsedData.Length; i++) {

// See the Data Types documentation for valid keys such
// as "Raw", "PoorSignal", "Attention", etc.

if(tgParser.ParsedData[i].ContainsKey("Raw")){
Console.WriteLine("Raw Value:" + tgParser.ParsedData[i]["Raw"]);

}

if(tgParser.ParsedData[i].ContainsKey("PoorSignal")){
Console.WriteLine("PQ Value:" + tgParser.ParsedData[i]["PoorSignal"]);

}

if(tgParser.ParsedData[i].ContainsKey("Attention")) {
Console.WriteLine("Att Value:" + tgParser.ParsedData[i]["Attention"]);

}

if(tgParser.ParsedData[i].ContainsKey("Meditation")) {
Console.WriteLine("Med Value:" + tgParser.ParsedData[i]["Meditation"]);

}

if(tgParser.ParsedData[i].ContainsKey("RespiratoryRate")){
Console.WriteLine("Respiratory Rate:" + tgParser.ParsedData[i]["RespiratoryRate"]);

}

Using the NeuroSky.ThinkGear Namespace
May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.

10

http://www.neurosky.com

Chapter 3 – Developing Your Own ThinkGear-enabled Apps for .NET

if(tgParser.ParsedData[i].ContainsKey("RelaxationLevel")){
Console.WriteLine("Relaxation Level:" + tgParser.ParsedData[i]["RelaxationLevel"]);

}
}

}

When you would like to begin the Task Familiarity and/or Mental Effort 1 calculations, use the con-
nector to enable them:

connector.setTaskFamiliarityEnable(true);
connector.setMentalEffortEnable(true);

Once you have the handlers set up as described above, you can have your Connector actually connect
to a device/headset/COM port by using one of the Connect methods described in Connect to a device
below. If the portName is valid and the connection is successful, then your OnDataReceived() method
will automatically be called and executed whenever data arrives from the headset.

Before exiting, your application must close the Connector's open connections by calling the Con-
nector's close() method.

connector.close();

If close() is not called on an open connection, and that connection's process is still alive (i.e. a
background thread, or a process that only closed the GUI window without terminating the process
itself), then the headset will still be connected to the process, and no other process will be able to
connect to the headset until it is disconnected.

Events

If you choose to connect by stating a speciëc COM port, it will take the following steps:

1. connector.Connect(portName);

2. connector.Connect in turn validates the COM port. So the DeviceValidating event is triggered

3. if the COM port was valid, it connects to the device. e DeviceFound event is never triggered

4. if the COM port was invalid, the DeviceNotFound event is triggered.

If you choose to connect by using the AUTO approach, it will take the following steps:

1. connector.Find();

2. if it is able to ënd a COM port with valid inkGear Packets, it triggers DeviceFound. Other-
wise, the DeviceNotFound event is triggered

3. the OnDeviceFound method in turn calls connector.Connect(tempPortName); where temp-
PortName is the valid COM port. is in turn calls DeviceValidating.

4. if the COM port was valid, it connects to the device.

5. if the COM port was invalid, the DeviceNotFound event is triggered.
1older documents refer to "Task Difficulty", this name is replaced by "Mental Effort" which more plainly describes the

functionality

Events
May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.

11

http://www.neurosky.com

Chapter 3 – Developing Your Own ThinkGear-enabled Apps for .NET

Tips on using ThinkGear.NET
• In order to connect quickly, your application should always remember across sessions the last
COM portName that was able to successfully connect, and try to connect to that same portName
ërst the next time a connection attempt is made. If that remembered portName is no longer
valid or unable to connect, then you can use ConnectScan(string portName)method to
ënd another valid portName.

• If an unexpected disconnection occurs, your application should try to reconnect automatically
and prompt the user to check their headset device for the following:

– Battery is properly inserted into the headset device, and has sufficient charge (or try a new
battery)

– Headset device is turned on

– Headset device is properly paired in Bluetooth settings

– Headset device is within range of the Bluetooth receiver (within 10m unobstructed)

Events
May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.

12

http://www.neurosky.com

Chapter 4

API Reference

Connector class

Methods
Connect to a device

void Connect(string portName) Attempts to open a connection with the port name speciëed by
portName. Calling this method results in one of two events being broadcasted:

• DeviceConnected - A connection was successfully opened on portName

• DeviceConnectFail - e connection attempt was unsuccessful

void ConnectScan() Attempts to open a connection to the ërst Device seen by the Connector.
Calling this method results in one of two events being broadcasted:

• DeviceConnected - A connection was successfully opened on portName

• DeviceConnectFail - e connection attempt was unsuccessful

void ConnectScan(string portName) Same as ConnectScan but scans the port speciëed by port-
Name ërst. Calling this method results in one of two events being broadcasted:

• DeviceConnected - A connection was successfully opened on portName

• DeviceConnectFail - e connection attempt was unsuccessful

Disconnect from a device

void Disconnect() Closes all open connections. Calling this method will result in the following
event being broadcasted for each open device:

• DeviceDisconnected - e device was disconnected

voidDisconnect(Connection connection) Closes a speciëc Connection speciëed by connection.
Calling this method will result in the following event being broadcasted for a speciëc open device:

• DeviceDisconnected - e device was disconnected

void Disconnect(Device device) Closes a speciëc Device speciëed by device. Calling this method
will result in the following event being broadcasted for a speciëc open device:

• DeviceDisconnected - e device was disconnected

May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.
13

http://www.neurosky.com

Chapter 4 – API Reference

Send bytes to a device

void Send(string portName, byte[] bytesToSend) Sends an array of bytes to a speciëc port

Configure Task Familiarity/Mental Effort

void enableTaskDifficulty()DEPRICATED Starts recording data for 60 seconds. Once the record-
ing is complete, the Task Difficulty will be calculated. Note: the ërst time the Mental Effort 1 is
calculated, the result is 0.

void enableTaskFamiliarity() DEPRICATED Starts recording data for 60 seconds. Once the
recording is complete, the Task Familiarity will be calculated. Note: the ërst time the Task Famil-
iarity is calculated, the result is 0.

Events
DeviceFound Occurs when a inkGear device is found. is is where the application chooses to
connect to that port or not.

DeviceNotFound Occurs when a inkGear device could not be found. is is usually where the
application displays an error that it did not ënd any device.

DeviceValidating Occurs right before the connector attempts a serial port. Mainly used to notify
the GUI which port it is trying to connect.

DeviceConnected Occurs when a inkGear device is connected. is is where the application
links the OnDataReceived for that device.

DeviceConnectFail Occurs when the Connector fails to connect to that port speciëed.

DeviceDisconnected Occurs when the Connector disconnects from a inkGear device.

DataReceived Occurs when data is available from a inkGear device.

TGParser Class

e TGParser class is used to convert the received data into easily accessible data contained in a Dic-
tionary.

1older documents refer to "Task Difficulty", this name is replaced by "Mental Effort" which more plainly describes the
functionality

TGParser Class
May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.

14

http://www.neurosky.com

Chapter 4 – API Reference

Methods
Dictionary<string, double>[] Read(DataRow[] dataRow) Parses the raw headset data in dataRow
and returns a dictionary of usable data. It also stores the dictionary in the ParsedData property.

When connected to a MindSet, MindWave, or MindWave Mobile headset, the Read() method can
return the following standard keys in its dictionary:

Key Description Data Type
Time TimeStamps of packet received double
Raw Raw EEG data short
EegPowerDelta Delta Power uint
EegPowereta eta Power uint
EegPowerAlpha1 Low Alpha Power uint
EegPowerAlpha2 High Alpha Power uint
EegPowerBeta1 Low Beta Power uint
EegPowerBeta2 High Beta Power uint
EegPowerGamma1 Low Gamma Power uint
EegPowerGamma2 High Gamma Power uint
Attention Attention eSense double
Meditation Meditation eSense double
Zone performance Zone double
PoorSignal Poor Signal double
BlinkStrength Strength of detected blink. e Blink

Strength ranges from 1 (small blink) to 255
(large blink). Unless a blink occurred, noth-
ing will be returned. Blinks are only calcu-
lated if PoorSignal is less than 51.

uint

Task Familiarity Can be used to compare a test subjects fa-
miliarity with a newly learned (motor) skill.
Oneminute of collected data could constitute
a trial, and will produce a familiarity index
value. e familiarity index of separate trials
of the skill can be compared.

double

Mental Effort Can be used to compare the mental effort
needed by a test subject. One minute of col-
lected data could constitute a trial, and will
produce a mental effort index value. e
mental effort index of separate trials can be
compared.

double

When connected to a inkCap, the Read() method can return the following keys in its dictionary:

TGParser Class
May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.

15

http://www.neurosky.com

Chapter 4 – API Reference

Key Description Data Type
Time TimeStamps of packet received double
RawCh1 EEG Channel 1 short
RawCh2 EEG Channel 2 short
RawCh3 EEG Channel 3 short
RawCh4 EEG Channel 4 short
RawCh5 EEG Channel 5 short
RawCh6 EEG Channel 6 short
RawCh7 EEG Channel 7 short
RawCh8 EEG Channel 8 short

When connected to a BMD10X device, the Read() method can return the following keys in its
dictionary:

Key Description Data Type
PoorSignal Poor Signal/Signal Status short
Raw Minimally processed sample from AD converter short
HeartRate User's instantaneous heart rate (BPM) double
RrInt Time between detected heart beats in milliseconds uint
RespiratoryRate User's respiration rate in breaths per minutes double
Relaxation User's relaxation level derived from the user's EKG uint

Detailed Descriptions
ZONE

is value reports the current performance Zone of the subject. It's value ranges from 0 to 9. And
this value is sent only when the subject transitions from one Zone to another.

is algorithm uses the Attention and Mediation values to guide a subject to their best performance.

To be in the Elite Zone (9), the subject must hold their Attention level a value of at least 94 and
simultaneously holding their Meditation level steady or increasing.

To be in the Intermediate Zone (5), the subject must hold their Attention level a value of at least 64
and simultaneously holding their Meditation level steady or increasing.

To be in the Beginner Zone (1), the subject must hold their Attention level a value of at least 28 and
simultaneously holding their Meditation level steady or increasing.

e Not Ready Zone (0) is all Attention levels below 28 and subjects from the Beginner Zone whose
Meditation levels are decreasing.

All Zone calculations aresuspended and values reset if the sensor doesn't appear to be in good contact
with a human.

Note: is is a different implementation of performance Zone compared to other NeuroSky products.
Reference: Golf Putting Training Algorithm v 2.0, September 2012, Dr. KooHyoung Lee.

TGParser Class
May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.

16

http://www.neurosky.com

Chapter 5

ThinkGear Data Types

e inkGear data types are generally divided into three groups: data types that are only applicable
for EEG sensor devices, types that are only applicable for ECG/EKG (CardioChip) sensor devices, and
data types that are typically applicable to allinkGear-based devices, including EEG and ECG/EKG.

General

ese data types are generally available from most or all types of inkGear hardware devices.

POOR_SIGNAL/SENSOR_STATUS
is integer value provides an indication of how good or how poor the bio-signal is at the sensor. is
value is typically output by all inkGear hardware devices once per second.

is is an extremely important value for any app usinginkGear sensor hardware to always read, un-
derstand, and handle. Depending on the use cases for your app and users, your app may need to alter
the way it uses other data values depending on the current value of POOR_SIGNAL/SIGNAL_STATUS.
For example, if this value is indicating that the bio-sensor is not currently contacting the subject, then
any received RAW_DATA or EEG_POWER values during that time should be treated as ìoating noise
not from a human subject, and possibly discarded based on the needs of the app. e value should also
be used as a basis to prompt the user to possibly adjust their sensors, or to put them on in the ërst place.

Important: is updated version converts poorSignal values read from different hardware devices. It
converts them into a uniform format. (unlike earlier version of the SDK) If you have software that
reacts to the poorSignal value, you should evaluate that software to see if changes need to be made

Poor signal may be caused by a number of different things. In order of severity, they are:

• Sensor, ground, or reference electrodes not being on a person's head/body

• Poor contact of the sensor, ground, or reference electrodes to a person's skin

• Excessive motion of the wearer (i.e. moving head or body excessively, jostling the headset/sen-
sor).

• Excessive environmental electrostatic noise (some environments have strong electric signals or
static electricity buildup in the person wearing the sensor).

• Excessive biometric noise (i.e. unwanted EMG, EKG/ECG, EOG, EEG, etc. signals)

For EEG modules, a certain amount of noise is unavoidable in normal usage of inkGear sensor
hardware, and both NeuroSky's ëltering technology and algorithms have been designed to detect,
correct, compensate for, account for, and tolerate many types of signal noise. Most typical users who
are only interested in using the eSense™ values, such as Attention andMeditation, do not need to worry
as much about the POOR_SIGNAL Quality value, except to note that the Attention and Meditation
values will not be updated while POOR_SIGNAL is greater than zero, and that the headset is not being

May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.
17

http://www.neurosky.com

Chapter 5 – ThinkGear Data Types

worn while POOR_SIGNAL is higher than 128. e POOR_SIGNALQuality value is more useful to some
applications which need to be more sensitive to noise (such as some medical or research applications),
or applications which need to know right away when there is even minor noise detected.

RAW_DATA
is data type supplies the raw sample values acquired at the bio-sensor. e sampling rate (and
therefore output rate), possible range of values, and interpretations of those values (conversion from
raw units to volt) for this data type are dependent on the hardware characteristics of the inkGear
hardware device performing the sampling. You must refer to the documented development specs of
each type of inkGear hardware that your app will support for details.

As an example, the majority of inkGear devices sample at 512Hz, with a possible value range of
-32768 to 32767.

As another example, to convert TGAT-based EEG sensor values (such as TGAT, TGAM, MindWave
Mobile, MindWave, MindSet) to voltage values, use the following conversion:

(rawValue * (1.8/4096)) / 2000

Note that ECG/EKG raw values from CardioChip/BMD10X-based devices must use a different con-
version.

(rawValue * 18.3) / 128.0

RAW_MULTI
is data type is not currently used by any current commercially-available inkGear products. It is kept
here for backwards compatibility with some end-of-life products, and as a placeholder for possible future
products.

EEG

ese data types are only available from EEG sensor hardware devices, such as the MindWave Mobile,
MindSet, MindBand, and TGAM chips and modules.

ATTENTION
is int value reports the current eSense™ Attention meter of the user, which indicates the intensity of
a user's level of mental "focus" or "attention", such as that which occurs during intense concentration
and directed (but stable) mental activity. Its value ranges from 0 to 100. Distractions, wandering
thoughts, lack of focus, or anxiety may lower the Attention meter levels. See eSense Meters below for
details about interpreting eSense™ levels in general.

By default, output of this Data Value is enabled. It is typically output once a second.

MEDITATION
is unsigned one-byte value reports the current eSense™Meditationmeter of the user, which indicates
the level of a user's mental "calmness" or "relaxation". Its value ranges from 0 to 100. Note that
Meditation is a measure of a person's mental levels, not physical levels, so simply relaxing all the

EEG
May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.

18

http://www.neurosky.com

Chapter 5 – ThinkGear Data Types

muscles of the body may not immediately result in a heightened Meditation level. However, for
most people in most normal circumstances, relaxing the body often helps the mind to relax as well.
Meditation is related to reduced activity by the active mental processes in the brain, and it has long
been an observed effect that closing one's eyes turns off the mental activities which process images
from the eyes, so closing the eyes is often an effective method for increasing theMeditation meter level.
Distractions, wandering thoughts, anxiety, agitation, and sensory stimuli may lower the Meditation
meter levels. See eSense Meters below for details about interpreting eSense™ levels in general.

By default, output of this Data Value is enabled. It is typically output once a second.

eSense Meters

For all the different types of eSense™ (i.e. Attention, Meditation), the meter value is reported on a
relative eSense™ scale of 1 to 100. On this scale, a value between 40 to 60 at any given moment in time
is considered "neutral", and is similar in notion to "baselines" that are established in conventional EEG
measurement techniques (though the method for determining ainkGear baseline is proprietary and
may differ from conventional EEG). A value from 60 to 80 is considered "slightly elevated", and may
be interpreted as levels being possibly higher than normal (levels of Attention or Meditation that may
be higher than normal for a given person). Values from 80 to 100 are considered "elevated", meaning
they are strongly indicative of heightened levels of that eSense™.

Similarly, on the other end of the scale, a value between 20 to 40 indicates "reduced" levels of the
eSense™, while a value between 1 to 20 indicates "strongly lowered" levels of the eSense™. ese levels
may indicate states of distraction, agitation, or abnormality, according to the opposite of each eSense™.

ZONE
is value reports the current performance Zone of the subject. It's value ranges from 0 to 9. And
this value is sent only when the subject transitions from one Zone to another.

is algorithm uses the Attention and Mediation values to guide a subject to their best performance.

To be in the Elite Zone (9), the subject must hold their Attention level a value of at least 94 and
simultaneously holding their Meditation level steady or increasing.

To be in the Intermediate Zone (5), the subject must hold their Attention level a value of at least 64
and simultaneously holding their Meditation level steady or increasing.

To be in the Beginner Zone (1), the subject must hold their Attention level a value of at least 28 and
simultaneously holding their Meditation level steady or increasing.

e Not Ready Zone (0) is all Attention levels below 28 and subjects from the Beginner Zone whose
Meditation levels are decreasing.

All Zone calculations are suspended and values reset if the sensor doesn't appear to be in good contact
with a human.

Note: is is a different implementation of performance Zone compared to other NeuroSky products.
Reference: Golf Putting Training Algorithm v 2.0, September 2012, Dr. KooHyoung Lee.

BLINK
is int value reports the intensity of the user's most recent eye blink. Its value ranges from 1 to 255
and it is reported whenever an eye blink is detected. e value indicates the relative intensity of the
blink, and has no units.

EEG
May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.

19

http://www.neurosky.com

Chapter 5 – ThinkGear Data Types

e Detection of Blinks must be enabled.

if (setBlinkDetectionEnabled(true)) {
// return true, means success

Console.WriteLine("HelloEEG: BlinkDetection is Enabled");
}
else {

// return false, meaning not supported because:
// + connected hardware doesn't support
// + conflict with another option already set
// + not support by this version of the SDK

Console.WriteLine("HelloEEG: BlinkDetection can not be Enabled");
}

e current conëguration can be retrieved.

if (getBlinkDetectionEnabled()) {
// return true, means it is enabled

Console.WriteLine("HelloEEG: BlinkDetection is configured");
}
else {

// return false, meaning not currently configured

Console.WriteLine("HelloEEG: BlinkDetection is NOT configured");
}

Note: If these methods are called before the MSG_MODEL_IDENTIFIED has been received, it is consid-
ered a request to be processed when the connected equipment is identiëed. It is possible to Enable
this feature and later ënd that it is no longer enabled. Once the connected equipment has been
identiëed, if the request is incompatible with the hardware or software it will be overridden and the
MSG_ERR_CFG_OVERRIDE message sent to provide notiëcation.

EEG_POWER
is Data Value represents the current magnitude of 8 commonly-recognized types of EEG frequency
bands.

e eight EEG powers are: delta (0.5 - 2.75Hz), theta (3.5 - 6.75Hz), low-alpha (7.5 - 9.25Hz),
high-alpha (10 - 11.75Hz), low-beta (13 - 16.75Hz), high-beta (18 - 29.75Hz), low-gamma (31 -
39.75Hz), and mid-gamma (41 - 49.75Hz). ese values have no units and are only meaningful for
comparison to the values for the other frequency bands within a sample.

By default, output of this Data Value is enabled, and it is output approximately once a second.

THINKCAP_RAW
is data type is not currently used by any current commercially-available inkGear products. It is kept
here for backwards compatibility with some end-of-life products, and as a placeholder for possible future
products.

EEG
May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.

20

http://www.neurosky.com

Chapter 5 – ThinkGear Data Types

POSITIVITY
Values -100 to +100, indicates that the subject is attentive, the more negative values mean the subject
is less attentive and the more positive values mean more attentive.

Note: is feature is not currently available.

FAMILIARITY
is algorithm seeks to represent the subject's Familiarity with a motor skill, it may be used together
with the Mental Effort algorithm to examine different aspects of learned motor skills. But it may also
be used independently.

It can be used to compare a test subjects familiarity with a newly learned motor skill. One minute of
collected data constitutes a trial, and will produce a familiarity index value for this individual. e
familiarity index of separate trials of the motor skill can be compared for the same individual.

e familiarity index is a reported as a ìoating point number. ey have no units and are only mean-
ingful in comparison to other values collected from the same individual. A useful presentation is to
calculate the percentage change from a baseline (or the last) trial and the current trial. Note that the
difference may be positive or negative. Examine the HelloEEG sample application for one example
of how to use this information.

e Calculation of Task Familiarity must be enabled.

if (setTaskFamiliarityEnable(true)) {
// return true, means success

Console.WriteLine("HelloEEG: TaskFamiliarity is Enabled");
}
else {

// return false, meaning not supported because:
// + connected hardware doesn't support
// + conflict with another option already set
// + not support by this version of the SDK

Console.WriteLine("HelloEEG: TaskFamiliarity can not be Enabled");
}

e current conëguration can be retrieved.

if (getTaskFamiliarityEnable()) {
// return true, means it is enabled

Console.WriteLine("HelloEEG: TaskFamiliarity is configured");
}
else {

// return false, meaning not currently configured

Console.WriteLine("HelloEEG: TaskFamiliarity is NOT configured");
}

After it is enabled, this algorithmwill be executed one time. e execution begins as soon as 60 seconds
of good data has been collected. After the results have been reported, the algorithm is automatically
disabled.

EEG
May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.

21

http://www.neurosky.com

Chapter 5 – ThinkGear Data Types

It is possible to conëgure the algorithm to run continuously. But enabling continuous operation
does not automatically enable the algorithm, after setting RunContinuous, you must also enable the
algorithm.

if (setTaskFamiliarityRunContinuous(true)) {
// return true, means success

Console.WriteLine("HelloEEG: TaskFamiliarity Continuous operation");
}
else {

// return false, meaning not supported because:
// + connected hardware doesn't support
// + conflict with another option already set
// + not support by this version of the SDK

Console.WriteLine("HelloEEG: TaskFamiliarity normal operation ");
}

e current conëguration can be retrieved.

if (getTaskFamiliarityRunContinuous()) {
// return true, means it is enabled

Console.WriteLine("HelloEEG: TaskFamiliarity Continuous operation");
}
else {

// return false, meaning not currently configured

Console.WriteLine("HelloEEG: TaskFamiliarity normal operation");
}

Note: If these methods are called before the MSG_MODEL_IDENTIFIED has been received, it is consid-
ered a request to be processed when the connected equipment is identiëed. It is possible to Enable
this feature and later ënd that it is no longer enabled. Once the connected equipment has been
identiëed, if the request is incompatible with the hardware or software it will be overridden and the
MSG_ERR_CFG_OVERRIDE message sent to provide notiëcation.

Note: is algorithm is resource and computation intensive. If you need to run with the Debugger, be
aware that this calculation may take many minutes to complete when the debugger is engaged. It will
complete and present it's results. Without the debugger engaged, this calculation should complete in
a few seconds.

MENTAL EFFORT
is algorithm seeks to represent the subject's Mental Effort, it may be used together with the Fa-
miliarity algorithm to examine different aspects of learned motor skills. But it may also be used
independently.

It can be used to compare how difficult a test subjects ënds a newly learned motor skill. One minute
of collected data constitutes a trial, and will produce a mental effort index value for this individual.
e index of separate trials of the motor skill can be compared for the same individual.

e mental effort index is a reported as a ìoating point number. ey have no units and are only
meaningful in comparison to other values collected from the same individual. A useful presentation is

EEG
May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.

22

http://www.neurosky.com

Chapter 5 – ThinkGear Data Types

to calculate the percentage change from an initial (or baseline) trial and the current trial. Note that the
difference may be positive or negative. Examine the HelloEEG sample application for one example of
how to use this information.

e Calculation of Mental Effort 1 must be enabled.

if (setMentalEffortEnable(true)) {
// return true, means success

Console.WriteLine("HelloEEG: MentalEffort is Enabled");
}
else {

// return false, meaning not supported because:
// + connected hardware doesn't support
// + conflict with another option already set
// + not support by this version of the SDK

Console.WriteLine("HelloEEG: MentalEffort can not be Enabled");
}

e current conëguration can be retrieved.

if (getMentalEffortEnable()) {
// return true, means it is enabled

Console.WriteLine("HelloEEG: MentalEffort is configured");
}
else {

// return false, meaning not currently configured

Console.WriteLine("HelloEEG: MentalEffort is NOT configured");
}

After it is enabled, this algorithmwill be executed one time. e execution begins as soon as 60 seconds
of good data has been collected. After the results have been reported, the algorithm is automatically
disabled.

It is possible to conëgure the algorithm to run continuously. But enabling continuous operation
does not automatically enable the algorithm, after setting RunContinuous, you must also enable the
algorithm.

if (setMentalEffortRunContinuous(true)) {
// return true, means success

Console.WriteLine("HelloEEG: MentalEffort Continuous operation");
}
else {

// return false, meaning not supported because:
// + connected hardware doesn't support
// + conflict with another option already set
// + not support by this version of the SDK

Console.WriteLine("HelloEEG: MentalEffort normal operation ");
}

1older documents refer to "Task Difficulty", this name is replaced by "Mental Effort" which more plainly describes the
functionality

EEG
May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.

23

http://www.neurosky.com

Chapter 5 – ThinkGear Data Types

e current conëguration can be retrieved.

if (getMentalEffortRunContinuous()) {
// return true, means it is enabled

Console.WriteLine("HelloEEG: MentalEffort Continuous operation");
}
else {

// return false, meaning not currently configured

Console.WriteLine("HelloEEG: MentalEffort normal operation");
}

Note: If these methods are called before the MSG_MODEL_IDENTIFIED has been received, it is consid-
ered a request to be processed when the connected equipment is identiëed. It is possible to Enable
this feature and later ënd that it is no longer enabled. Once the connected equipment has been
identiëed, if the request is incompatible with the hardware or software it will be overridden and the
MSG_ERR_CFG_OVERRIDE message sent to provide notiëcation.

Note: is algorithm is resource and computation intensive. If you need to run with the Debugger, be
aware that this calculation may take many minutes to complete when the debugger is engaged. It will
complete and present it's results. Without the debugger engaged, this calculation should complete in
a few seconds.

ECG/EKG

ese data types are only available from ECG/EKG sensor (CardioChip) hardware devices, such as
the CardioChip Starter Kit Unit and BMD10X chips and modules.

HeartRate
is int value reports the current heart rate of the user, in units of beats per minute (BPM). Unlike
many other commonly seen reports of heart rate from other devices, this value is calculated precisely
in real time based on the actual time between each and every one of the user's actual R-peaks. is
results in a very precise and continuous reporting of Heart Rate that changes with the actual beat-to-
beat ìuctuations of every single one of the user's actual heart beats.

To easily get an "smoothed, averaged" heart rate value which is more commonly seen as reported by
other ECG/EKG devices, use these values as inputs to the Smoothed Heart Rate described below.

Smoothed Heart Rate
Typically, when viewing a "Heart Rate" value on many ECG/EKG devices, a "smoothed" value is dis-
played so that there aren't rhythmic ìuctuations in the viewed heart rate based on the subject's natural
HRV rhythms. e same sort of "smoothed" effect can be achieved against the precise HEART RATE
values, by using the getAcceleration() method of the HeartRateAcceleration class provided
in this SDK.

See the section on Heart Rate Acceleration for a description of how to calculate the Smoothed Heart
Rate, and then refer to the API Reference for full details on the HeartRateAcceleration class.

ECG/EKG
May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.

24

http://www.neurosky.com

Chapter 5 – ThinkGear Data Types

Heart Rate Acceleration
A potentially useful metric of Heart Rate is the acceleration rate. A positive acceleration value indicates
the user's heart rate is speeding up by a certain number of BPM over a given period of time (such as
over 10 seconds), while a negative acceleration value indicates the user's heart rate is slowing down by
a certain number of BPM over a given period. When starting exercise, or during rest after exercise,
this acceleration metric could be used as an indicator of how quickly a person's heart is speeding up
to match the activity, or how quickly it is slowing down back to normal, respectively.

To calculate Heart Rate Acceleration (and/or Smoothed Heart Rate), ërst initialize a HeartRateAccel-
eration() object in your app:

HeartRateAcceleration heartRateAcceleration = new HeartRateAcceleration();

is will initialize the calculation to use a period of 10 second. (You can instead choose to use the over-
loaded constructors to initialize the calculation using a longer or shorter period of time, as appropriate
for your app).

en, whenever a new Heart Rate value becomes available to your app, get the Smoothed Heart Rate
and acceleration values like this:

int[] result = heartRateAcceleration.getAcceleration(heartRate, poorSignal);
if(result[0] != -1) {

int smoothedHeartRate = result[0];
int heartRateAcceleration = result[1];

}

Refer to the API Reference documentation for full details of the HeartRateAcceleration class.

Target Heart Rate for Physical Training
Given information about a user's age and gender, it is possible to determine a target range of heart
rates for them to achieve particular physical training "zones". Combined with the HEART RATE
information reported by the sensor, an app could advise a user whether their current heart rate is
within their target training zone (such as right after a workout).

To determine the target range of heart rates for a person, ërst create a TargetHeartRate object:

TargetHeartRate targetHeartRate = new TargetHeartRate();

en, at any time, to determine the target range of heart rates (min to max values) for a a user to
achieve a particular physical training zone, use the getTargetHeartRate() method:

int age = 25;
String gender = "Male";
String zone = "Aerobic";
int[] range = targetHeartRate.getTargetHeartRate(age, gender, zone);

int lowerBound = range[0];
int upperBound = range[1];

e lowerBound and upperBound could then be compared to the user's HEARTRATE or Smoothed
Heart Rate to determine if the user is within the their target range for the target physical training zone.

e gender must be either "Male" or "Female". e zone must be one of:

ECG/EKG
May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.

25

http://www.neurosky.com

Chapter 5 – ThinkGear Data Types

• "Light Exercise"

• "Weight Loss"

• "Aerobic"

• "Conditioning"

• "Athletic"

If any of the arguments are incorrect, then the method will return an int[] of -1, -1 .

Important: e heart rate should not be measured while the user is engaged in physical activity; the
user should temporarily stop the activity and then measure their heart rate.

(References)

1. http://www.heart.org/HEARTORG/GettingHealthy/PhysicalActivity/Target-Heart-Rates_UCM_434341_Article.jsp

2. http://www.cdc.gov/physicalactivity/everyone/measuring/heartrate.html

3. http://www.heart.com/heart-rate-chart.html

4. http://www.thewalkingsite.com/thr.html

Heart Fitness Level
Given a person's age, gender, and current resting heart rate, it is possible to get a general idea of the
person's current heart health and ëtness, labeling them as one of "Poor", "Below Average", "Average",
"Above Average", "Good", "Excellent", or "Athlete".

To determine the heart ëtness level for a person, ërst create a HeartFitnessLevel object:

HeartFitnessLevel heartFitnessLevel = new HeartFitnessLevel();

en, once you have the age, gender, and current resting heart rate of the person, use the getHeart-
FitnessLevel() method:

int age = 25;
String gender = "Male"; // "Male" or "Female"
int restingHR = 60;
String heartFitnessLevel = heartFitnessLevel.getHeartFitnessLevel(age, gender, restingHR);

e gender must be one of "Male" or "Female", otherwise the method will simply return the empty
string ("").

e heartFitnessLevel will be returned as one of "Poor", "Below Average", "Average", "Above
Average", "Good", "Excellent", or "Athlete".

(References)

1. http://www.topendsports.com/testing/heart-rate-resting-chart.htm

ECG/EKG
May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.

26

http://www.heart.org/HEARTORG/GettingHealthy/PhysicalActivity/Target-Heart-Rates_UCM_434341_Article.jsp
http://www.cdc.gov/physicalactivity/everyone/measuring/heartrate.html
http://www.heart.com/heart-rate-chart.html
http://www.thewalkingsite.com/thr.html
http://www.topendsports.com/testing/heart-rate-resting-chart.htm
http://www.neurosky.com

Chapter 5 – ThinkGear Data Types

RELAXATION
e Relaxation data value gives an indication of whether a user's heart is showing indications of relax-
ation, or is instead showing indications of excitation, stress, or fatigue, based on the user's Heart Rate
Variability (HRV) characteristics. It is reported on a scale from 1 to 100. High Relaxation values tend
to indicate a state of relaxation, while low values tend to indicate excitation, stress, or fatigue.

To receive these values via MSG_RELAXATION messages to your app's Handler, simply have the
TGDevice connected to a inkGear ECG/EKG sensor (CardioChip), and a user contacting the
ECG/EKG sensor hardware properly for at least one minute continuously with a good, clean signal
(SENSOR_STATUS == 200 for 1 minute). If the signal is interrupted, and SENSOR_STATUS
becomes anything other than 200, then this calculation is reset and starts over, requiring another
minute of clean data to report a MSG_RELAXATION.

For best results, the user should be sitting calmly during data collection.

(References)

1. Neurosci Biobehav Rev. 2009 Feb; 33(2): 71-80. Epub 2008 Jul 30. Heart rate variability
explored in the frequency domain: a tool to investigate the link between heart and behavior.
Montano N, Porta A, Cogliati C, Costantino G, Tobaldini E, Casali KR, Iellamo F.

2. Int J Cardiol. 2002 Jul; 84(1): 1-14. Functional assessment of heart rate variability: physio-
logical basis and practical applications. Pumprla J, Howorka K, Groves D, Chester M, Nolan
J.

3. International Conference on Computer and Automation Engineering. A Review of Measure-
ment and Analysis of Heart Rate Variability. Dipali Bansal, Munna Khan, A. K. Salhan.

4. Neurosci Biobehav Rev. 2009 Feb; 33(2): 81-8. Epub 2008 Aug 13. Claude Bernard and the
heart-brain connection: further elaboration of a model of neurovisceral integration. ayer JF,
Lane RD.

Respiratory Rate
e Respiration data value reports a user's approximate respiration rate in breaths per minute. It is
calculated from the user's ECG/EKG and Heart Rate Variability (HRV) characteristics.

e respiration rate is received by the application through the RespiratoryRate key, as in this ex-
ample code:

if(tgParser.ParsedData[i].ContainsKey("RespiratoryRate")){
Console.WriteLine("Respiratory Rate:" + tgParser.ParsedData[i]["RespiratoryRate"]);

}

For best results, the user should be sitting calmly during data collection.

(References)

1. Rosenthal, Talma, Ariela Alter, Edna Peleg, and Benjamin Gavish. "Device-guided breathing
exercises reduce blood pressure: ambulatory and home measurements." American Journal of
Hypertension. 14. (2001): 74–76.

e Calculation of Respiration Rate must be enabled. And once enabled it will run continuously until
disabled.

ECG/EKG
May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.

27

http://www.neurosky.com

Chapter 5 – ThinkGear Data Types

if (setRespirationRateEnable(true)) {
// return true, means success

Console.WriteLine("HelloEKG: RespirationRate is Enabled");
}
else {

// return false, meaning not supported because:
// + connected hardware doesn't support
// + conflict with another option already set
// + not support by this version of the SDK

Console.WriteLine("HelloEKG: RespirationRate can not be Enabled");
}

e current conëguration can be retrieved.

if (getRespirationRateEnable()) {
// return true, means it is enabled

Console.WriteLine("HelloEKG: RespirationRate is configured");
}
else {

// return false, meaning not currently configured

Console.WriteLine("HelloEKG: RespirationRate is NOT configured");
}

Note: If these methods are called before the MSG_MODEL_IDENTIFIED has been received, it is consid-
ered a request to be processed when the connected equipment is identiëed. It is possible to Enable
this feature and later ënd that it is no longer enabled. Once the connected equipment has been
identiëed, if the request is incompatible with the hardware or software it will be overridden and the
MSG_ERR_CFG_OVERRIDE message sent to provide notiëcation.

Note: is algorithm is resource and computation intensive. If you need to run with the Debugger, be
aware that this calculation may take many minutes to complete when the debugger is engaged. It will
complete and present it's results. Without the debugger engaged, this calculation should complete in
a few seconds.

Heart Risk Awareness
e Heart Risk Awareness data value aims to raise awareness if the HRV is very low, as low HRV has
been shown to be associated with increased risk of mortality.

To determine the Heart Risk Awareness for a person, ërst create a NeuroSkyHeartMeters object:

NeuroSkyHeartMeters neuroSkyHeartMeters = new NeuroSkyHeartMeters();

en, use one of the following two methods to calculate:

Using R-R Intervals Collection

Whenever your app's Handler receives a MSG_EKG_RRINT Message, save the R-R Interval value
into a buffer. Once you have at least 60 R-R Intervals in the buffer, use the calculateHear-
tRiskAware(Integer[] rrIntervalInMS) method of the NeuroSkyHeartMeters class:

ECG/EKG
May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.

28

http://www.neurosky.com

Chapter 5 – ThinkGear Data Types

private final Handler handler = new Handler() {

ArrayList<Integer> temp_rrintBuffer = new ArrayList<Integer>();
Integer[] rrinterBuffer = new Integer[60];

@Override
public void handleMessage(Message msg) {

switch(msg.what) {

//...

case MSG_EKG_RRINT:
temp_rrintBuffer.add(msg.arg1);
if(temp_rrintBuffer.size()==60) {

for(int i = 0; i<60; i++) {
rrintBuffer[i] = temp_rrintBuffer.get(i);

}
temp_rrintBuffer.clear();
int heartRiskAwareness = neuroSkyHeartMeters.calculateHeartRiskAware(

rrintBuffer);
}
break;

//...

} /* end switch on message type */

} /* end handleMessage() */

}; /* end Handler */

Using Storage Data

Simply use the calculateHeartRiskAware(String fileName)method in the NeuroSkyHeart-
Meters class:

int heartRiskAwarness = neuroSkyHeartMeters.calculateHeartRiskAware("john");

Note: e parameter "ëleName" in the method is the name of the ële that stored calculated heart age.

Results

e return value will be a "Heart Risk Awareness" index that will be one of "0", "1","2" or "3". e
following information could be provided by the app to the user based on their "Heart Risk Awareness":

HeartRiskAwareness = 0

Your HRV does not appear to be low at this time. Low HRV has been shown to be related to increased
risk of heart attack and mortality. is means your HRV suggests you currently have limited or no
risk.

HeartRiskAwareness = 1

Your HRV is a relatively low. Low HRV has been shown to be related to increased risk of heart attack
and mortality. It is recommended that you stay active and be careful about what you eat. You could

ECG/EKG
May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.

29

http://www.neurosky.com

Chapter 5 – ThinkGear Data Types

eat foods that can prevent heart attack, such as nuts, ësh, coarse grains, vegetables, and you may also
drink green tea.

HeartRiskAwareness = 2

Your HRV is low. Low HRV has been shown to be related to increased risk of heart attack and
mortality. Bad habits that inìuence the health of your heart include consumption of food with high
fat and sugar content, smoking, drinking alcohol, lack of exercise, high mental pressure, and long
periods of sleep deprivation. It is recommended that you change your bad habits by drinking only
a moderate amount of alcohol, eating healthy, getting appropriate exercise, controlling your body
weight, developing good sleeping habits, and keeping a peaceful state of mind.

HeartRiskAwareness = 3

Your HRV is very low. Low HRV has been shown to be related to increased risk of heart attack and
mortality. It is recommended that you change some of your habits. You may consider to quit smoking,
stop drinking alcohol. You should also make sure to get appropriate amount of exercise, control your
body weight, develop good sleeping habits, eat more ëber and less salt, and keep a peaceful state of
mind. Symptoms of heart attack include chest pain, shoulder pain, trouble breathing, poor digestion,
and severe fatigue. Please see a doctor if these symptoms occur to you.

(for References, see Heart Age)

HEART_AGE
e Heart Age data value provides an indication of the relative age of a subject heart, based on their
Heart Rate Variability (HRV) characteristics as compared to the general population. A low HRV is
associated with an increased risk of mortality, and is represented by a Heart Age that is possibly higher
than the user's biological age (such as a 35 year old with HRV characteristics that suggest a heart age
of 45). e calculation will take into account the user's reported biological age. Use of this data value
is only recommended for subjects that are at least 10 years old (biological age).

To receive these values via MSG_HEART_AGE Messages to your app's Handler, ërst set the user's
biological age via the TGDevice object: tgDevice.inputAge = 25 (of course replacing 25 with
the user's actual age). en, simply have the TGDevice connected to a inkGear ECG/EKG sensor
(CardioChip), and a user contacting the ECG/EKG sensor hardware properly for at least 60 heart
beats continuously with a good, clean signal (SENSOR_STATUS >= 200 for 60 heart beats). If
the signal is ever interrupted, and SENSOR_STATUS becomes anything less than 200, then this
calculation is reset and starts over, requiring another 60 heart beats of clean data before it can report
a MSG_HEART_AGE.

For best results, the user should be sitting calmly during data collection.

An example of how your app and users could potentially use this information would be if your app
displayed messages like the following to the user based on their Heart Age value:

Adolescent heart: < 25 years old

Your heart age is xx years old, which is greater/less than your actual age by xx years. Your young heart
age allows you to be energetic and to think actively, which helps you deal with demanding work and
exercise. A young heart also needs to be taken care of. It is recommended that you avoid staying up
late at night, get appropriate amounts of exercise, and maintain a peaceful and positive attitude. You
should also eat more fresh fruits and vegetables and cut down on fatty foods to keep your heart at its
young state.

Young heart: 26 – 39

ECG/EKG
May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.

30

http://www.neurosky.com

Chapter 5 – ThinkGear Data Types

Your heart age is xx years old, which is greater/less than your actual age by xx years. You have a mature
heart. While in a tense working environment, please don’t forget to get good amounts of sleep and
exercise, eat well, and take good care of yourself.

Middle-aged heart: 40 – 55

Your heart age is xx years old, which is greater/less than your actual age by xx years. Please pay close
attention to your heart health and plan your work and life accordingly to lessen the burden on your
heart. It is recommenced that you eat foods that are good for your heart, such as ësh, whole grains,
beans, nuts, vegetables, red wine, and green tea. You should also get a reasonable amount of exercise
to strengthen your heart.

Young elderly heart: 56 – 70

Your heart age is xx years old, which is greater/less than your actual age by xx years. Your heart’s
function is taking a step towards old age. It is recommended that you live with discipline and avoid
straining your body or becoming overly excited or nervous. You should also have regular physical
examinations and eat more foods that are good for your heart, such as ësh, coarse grains, beans, nuts,
vegetables, red wine, and green tea. It is also important for you to get a reasonable amount of exercise
so that your heart continues to work effectively.

Elderly heart: >70 years old

Your heart age is xx years old, which is greater/less than your actual age by xx years. It is recommended
that you regularly visit your doctor to get physical examinations and carefully follow your doctor’s
instructions in order to prevent and treat heart disease. You should also get appropriate amounts of
exercise and keep a peaceful state of mind. Living with discipline and eating healthy can improve the
function of your cardiovascular system and prevent heart disease.

(References)

1. Res Sports Med. 2010 Oct; 18(4):263-9. Age and heart rate variability after soccer games. Yu
S, Katoh T, Makino H, Mimuno S, Sato S.

2. J Am Coll Cardiol. 1998 Mar 1; 31(3): 593-601. Twenty four hour time domain heart rate
variability and heart rate: relations to age and gender over nine decades. Umetani K, Singer
DH, McCraty R, Atkinson M.

3. Am J Cardiol. 2010 Apr 15; 105(8): 1181-5. Epub 2010. Relation of high heart rate variability
to healthy longevity. Zulëqar U, Jurivich DA, Gao W, Singer DH.

4. Cardiovasc Electrophysiol. 2003 Aug; 14(8): 791-9. Circadian proële of cardiac autonomic
nervous modulation in healthy subjects: differing effects of aging and gender on heart rate vari-
ability. Bonnemeier H, Richardt G, Potratz J, Wiegand UK, Brandes A, Kluge N, Katus HA.

5. Pacing Clin Electrophysiol. 1996 Nov; 19(11 Pt 2): 1863-6. Changes in heart rate variability
with age. Reardon M, Malik M.

Personalization
is algorithm allows the Connector to try to recognize a connected user based on their ECG/EKG
data. To use it, one or more users should "train" their ECG/EKG data into the Connector. en,
whenever the Connector is reading ECG data from a user, it can attempt to identify which of the
trained users (if any) is the one it is reading from.

ere are two steps to use the Personalization algorithm:

ECG/EKG
May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.

31

http://www.neurosky.com

Chapter 5 – ThinkGear Data Types

Training

e ërst part records ECG/EKG data of user, using the EKGstartLongTraining(String user-
Name)method in the Connector class. If the user then keeps good, clean contact with the ECG/EKG
sensor hardware properly, a MSG_EKG_TRAIN_STEPMessage will be sent to your app's Handler to show
which step you are currently on. After two steps are ënished, it will send a MSG_EKG_TRAINEDMessage
to your app's Handler to indicate that the recording is ënished.

connector.EKGstartLongTraining("NeuroSky");

Detection

is part is used to recognize user based on saved data from the ërst part. To recognize user, invoke the
EKGstartDetection() method. en, if the user keeps a good, clean contact with the ECG/EKG
sensor hardware, the Connector will send a MSG_EKG_IDENTIFIED Message to your app's Handler.
e return value will be one of the registered user names, or "Unknown".

connector.EKGstartDetection();

Event Handler for EKGPersonalizationEvent

e EKGPersonalizationEvent event handler indicates which state the personalization algorithm is
currently in. ere are four possible states:

1. MSG_EKG_IDENTIFIED indicates that the algorithm has determined who the user is. e name
will be returned in the dataMessage.

2. MSG_EKG_TRAINED indicates that the ënal training step is complete. Typically, the next step
would be to call EKGstartLongTraining.

3. MSG_EKG_TRAIN_STEP indicates that a training step has been completed. e number of train-
ing steps completed is returned in the dataMessage.

4. MSG_EKG_TRAIN_TOUCH indicates that the user should now make good, clean contact with the
ECG/EKG sensor hardware.

In the event handler for EKGPersonalizationEvent, do the following:

static void OnEKGPersonalizationEvent(object sender, EventArgs e) {
EKGPersonalizationEventArgs ekgArgs = (EKGPersonalizationEventArgs)(e);
int status = ekgArgs.statusMessage;

switch(status) {
case 268:

string data = (string)(ekgArgs.dataMessage);
Console.WriteLine("status = MSG_EKG_IDENTIFIED " + " and username = " + data);
break;

case 269:
Console.WriteLine("status = MSG_EKG_TRAINED");
break;

case 270:
int trainStep = (int)ekgArgs.dataMessage;
Console.WriteLine("status = MSG_EKG_TRAIN_STEP " + " and training step = " + trainStep

+ ". Please remove fingers from sensors");
break;

ECG/EKG
May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.

32

http://www.neurosky.com

Chapter 5 – ThinkGear Data Types

case 271:
Console.WriteLine("status = MSG_EKG_TRAIN_TOUCH. Please place fingers on sensors");
break;

}
}

To use this event handler, add following code in your main function:

Connector.EKGPersonalizationEvent += new EventHandler(OnEKGPersonalizationEvent);

Important: Note that Connector.EKGPersonalizationEvent is a static event handler.

RrInt
Whenever an R-peak is detected along a user's PQRST ECG/EKG, then a RrInt data type is sent to
your app's data event handler indicating the R-R interval, in milliseconds, since the last R-peak.

ECG/EKG
May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.

33

http://www.neurosky.com

Chapter 6

Proper App Design

Important: Before releasing an app for real-world use, make sure your app considers or handles the
following:

• If your app'sHandler receives a MSG_STATE_CHANGEMessage with any value other than STATE_CONNECTING
or STATE_CONNECTED, it should carefully handle each possible error situation with an appropri-
ate message to the user via the app's UI. Not handling these error cases well in the UI almost
always results in an extremely poor user experience of the app. Here are some examples:

– If a STATE_ERR_BT_OFFMessage is received, the user should be prompted to turn on their
Bluetooth adapter, and then they can try again.

– If a STATE_ERR_NO_DEVICEMessage is received, the user should be reminded to ërst pair
their inkGear hardware device to their Android device's Bluetooth, according to the
instructions they received with their inkGear hardware device.

– If a STATE_NOT_FOUND Message is received, the user should be reminded to check that
their inkGear hardware device is properly paired to their Android device (same as the
STATE_ERR_NO_DEVICE case), and if so, that their inkGear hardware device is turned
on, in range, and has enough battery or charge.

– See TGDevice States for more info.

• Always make sure your app is handling the POOR SIGNAL/SENSOR STATUS Data Type. It
is output by almost all inkGear devices, and provides important information about whether
the sensor is properly in contact with the user. If it is indicating some sort of problem (problem
== not 0), then your app should notify the user to properly wear theinkGear hardware device,
and/or disregard any other reported data values while the POOR SIGNAL/SENSOR STATUS
continues to indicate a problem, as appropriate for your app.

• To make the user experience consistent, familiar, and easy-to-learn and use for end customers
across platforms and devices, your app should be designed to follow the guidelines and conven-
tions described in NeuroSky's App Standards.

May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.
34

http://developer.neurosky.com/docs/doku.php?id=app_standards
http://www.neurosky.com

Chapter 7

Troubleshooting

Note: ere are currently no known issues. If you encounter any bugs or issues, please visit
http://support.neurosky.com, or contact support@neurosky.com.

If you need further help, you may visit http://developer.neurosky.com to see if there is any new infor-
mation.

To contact NeuroSky for support, please visit http://support.neurosky.com, or send email to sup-
port@neurosky.com.

For developer community support, please visit our community forum on http://www.linkedin.com/groups/NeuroSky-
Brain-Computer-Interface-Technology-3572341

May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.
35

http://support.neurosky.com
http://developer.neurosky.com
http://support.neurosky.com
http://www.linkedin.com/groups/NeuroSky-Brain-Computer-Interface-Technology-3572341
http://www.linkedin.com/groups/NeuroSky-Brain-Computer-Interface-Technology-3572341
http://www.neurosky.com

Chapter 8

Important Notices

e algorithms included in this SDK are solely for promoting the awareness of personal wellness
and health and are not a substitute for medical care. e algorithms are not to be used to diagnose,
treat, cure or prevent any disease, to prescribe any medication, or to be a substitute for a medical
device or treatment. In some circumstances, the algorithm may report false or inaccurate results. e
descriptions of the algorithms or data displayed in the SDK documentation, are only examples of the
particular uses of the algorithms, and NeuroSky disclaims responsibility for the ënal use and display
of the algorithms internally and as made publically available.

e algorithms may not function well or may display accurate data if the user has a pacemaker.

All ECG data should be collected while the user is seated quietly, breathing regularly, with minimal
movement, for best results.

Warnings and Disclaimer of Liability

THE ALGORITHMS MUST NOT BE USED FOR ANY ILLEGAL USE, OR AS COMPO-
NENTS IN LIFE SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR MILITARY OR NU-
CLEAR APPLICATIONS, OR FOR ANY OTHER APPLICATION IN WHICH THE FAIL-
URE OF THE ALGORITHMS COULD CREATE A SITUATION WHERE PERSONAL IN-
JURY OR DEATH MAY OCCUR. YOUR USE OF THE SOFTWARE DEVELOPMENT KIT,
THE ALGORITHMS AND ANYOTHERNEUROSKY PRODUCTS OR SERVICES IS “AS-IS,”
AND NEUROSKY DOES NOTMAKE, AND HEREBY DISCLAIMS, ANY AND ALL OTHER
EXPRESS AND IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, WAR-
RANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, AND
ANYWARRANTIES ARISING FROMACOURSEOFDEALING, USAGE, OR TRADE PRAC-
TICE.

INNOEVENTSHALLNEUROSKYBELIABLE FORANYSPECIAL, INCIDENTALORCON-
SEQUENTIAL DAMAGES, INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS OR
INCOME, WHETHER OR NOT NEUROSKY HAD KNOWLEDGE, THAT SUCH DAM-
AGES MIGHT BE INCURRED.

May 30, 2013 | © 2012 NeuroSky, Inc. All Rights Reserved.
36

http://www.neurosky.com

	Introduction
	ThinkGear SDK for .NET Contents
	Supported ThinkGear Hardware

	Your First Project: HelloEEG console
	Developing Your Own ThinkGear-enabled Apps for .NET
	Preparing Your .NET Project
	The ThinkGear.dll
	The NeuroSky.ThinkGear Namespace
	Using the NeuroSky.ThinkGear Namespace
	Events
	Tips on using ThinkGear.NET

	API Reference
	Connector class
	Methods
	Events

	TGParser Class
	Methods
	Detailed Descriptions

	ThinkGear Data Types
	General
	POOR_SIGNAL/SENSOR_STATUS
	RAW_DATA
	RAW_MULTI

	EEG
	ATTENTION
	MEDITATION
	ZONE
	BLINK
	EEG_POWER
	THINKCAP_RAW
	POSITIVITY
	FAMILIARITY
	MENTAL EFFORT

	ECG/EKG
	HeartRate
	Smoothed Heart Rate
	Heart Rate Acceleration
	Target Heart Rate for Physical Training
	Heart Fitness Level
	RELAXATION
	Respiratory Rate
	Heart Risk Awareness
	HEART_AGE
	Personalization
	RrInt

	Proper App Design
	Troubleshooting
	Important Notices

