
ThinkGear Communications Protocol
September 3, 2011

e NeuroSky® product families consist of hardware and
software components for simple integration of this biosensor
technology into consumer and industrial end-applications.
All products are designed andmanufactured tomeet consumer
thresholds for quality, pricing, and feature sets. NeuroSky
sets itself apart by providing building block component
solutions that offer friendly synergies with related and complemen-
tary technological solutions.

NOWARRANTIES: THENEUROSKYPRODUCTFAMILIES
AND RELATED DOCUMENTATION IS PROVIDED "AS
IS"WITHOUTANY EXPRESSOR IMPLIEDWARRANTY
OFANYKINDINCLUDINGWARRANTIESOFMERCHANTABIL-
ITY,NONINFRINGEMENTOF INTELLECTUALPROPERTY,
INCLUDINGPATENTS,COPYRIGHTSOROTHERWISE,
OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO
EVENTSHALLNEUROSKYOR ITS SUPPLIERSBELIABLE
FORANYDAMAGESWHATSOEVER (INCLUDING,WITHOUT
LIMITATION,DAMAGESFORLOSSOFPROFITS, BUSINESS
INTERRUPTION,COSTOFREPLACEMENTGOODSOR
LOSSOFORDAMAGETOINFORMATION)ARISINGOUT
OFTHEUSEOFOR INABILITYTOUSETHENEUROSKY
PRODUCTS ORDOCUMENTATION PROVIDED, EVEN
IF NEUROSKY HAS BEEN ADVISED OF THE POSSIBIL-
ITYOFSUCHDAMAGES. , SOMEOFTHEABOVELIMITATIONS
MAY NOT APPLY TO YOU BECAUSE SOME JURISDIC-
TIONS PROHIBIT THE EXCLUSION OR LIMITATION
OFLIABILITYFORCONSEQUENTIALOR INCIDENTAL
DAMAGES.

USAGE OF THE NEUROSKY PRODUCTS IS SUBJECT
OF AN END-USER LICENSE AGREEMENT.

Contents

Introduction 4

inkGear Data Values 5
POOR_SIGNAL Quality . 5
eSense™ Meters . 5

ATTENTION eSense . 6
MEDITATION eSense . 6

8BIT_RAWWave Value . 6
RAW_MARKER Section Start . 7
RAWWave Value (16-bit) . 7
EEG_POWER . 8
ASIC_EEG_POWER_INT . 8
Eye Blink Strength . 9
Mind-wandering Level . 9

inkGear Packets 10
Packet Structure . 10

Packet Header . 11
Data Payload . 11
Payload Checksum . 11

Data Payload Structure . 12
DataRow Format . 12
CODE De nitions Table . 13

Example Packet . 15
Step-By-Step Guide to Parsing a Packet . 15

Step-By-Step Guide to Parsing DataRows in a Packet Payload 16
Sample C Code for Parsing a Packet . 16
inkGearStreamParser C API . 18

inkGear Command Bytes 22
Command Byte Syntax . 22
Firmware 1.6 Command Byte Table . 23
Firmware 1.7 Command Byte Table . 23

September 3, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.
3

http://www.neurosky.com

Chapter 1

Introduction

inkGear™ is the technology inside every NeuroSky product or partner product that enables a device
to interface with the wearers’ brainwaves. It includes the sensor that touches the forehead, the contact
and reference points located on the ear pad, and the onboard chip that processes all of the data and
provides this data to software and applications in digital form. Both the raw brainwaves and the eSense
Meters (Attention and Meditation) are calculated on the inkGear chip.

is inkGear Communications Protocol document de nes, in detail, how to communicate with
the inkGear modules. In particular, it describes:

• How to parse the serial data stream of bytes to reconstruct the various types of brainwave data
sent by the inkGear

• How to interpret and use the various types of brainwave data that are sent from theinkGear
(including Attention, Meditation, and signal quality data) in a BCI application

• How to send recon guration Command Bytes to the inkGear, for on-the- y customization
of the module's behavior and output

einkGearData Values chapter de nes the types ofData Values that can be reported byinkGear.
It is highly recommended that you read this section to familiarize yourself with which kinds of Data
Values are (and aren't) available frominkGear before continuing to later chapters.

einkGear Packets chapter describes the inkGear Packet format used to deliver the inkGear
Data Values.

e inkGear Command Bytes chapter is for advanced users and covers how to send Command
Bytes to the inkGear in order to customize its con guration (change baud rate, enable/disable
certain Data Value outputs, etc).

September 3, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.
4

http://www.neurosky.com

Chapter 2

ThinkGear Data Values

POOR_SIGNAL Quality

is unsigned one-byte integer value describes how poor the signal measured by the inkGear is. It
ranges in value from 0 to 255. Any non-zero value indicates that some sort of noise contamination is
detected. e higher the number, the more noise is detected. A value of 200 has a special meaning,
speci cally that the inkGear electrodes aren't contacting a person's skin.

is value is typically output every second, and indicates the poorness of the most recent measure-
ments.

Poor signal may be caused by a number of different things. In order of severity, they are:

• Sensor, ground, or reference electrodes not being on a person's head (i.e. when nobody is wearing
the inkGear).

• Poor contact of the sensor, ground, or reference electrodes to a person's skin (i.e. hair in the
way, or headset which does not properly t a person's head, or headset not properly placed on
the head).

• Excessive motion of the wearer (i.e. moving head or body excessively, jostling the headset).

• Excessive environmental electrostatic noise (some environments have strong electric signals or
static electricity buildup in the person wearing the sensor).

• Excessive non-EEG biometric noise (i.e. EMG, EKG/ECG, EOG, etc)

A certain amount of noise is unavoidable in normal usage of inkGear, and both NeuroSky's lter-
ing technology and eSense™ algorithm have been designed to detect, correct, compensate for, account
for, and tolerate many types of non-EEG noise. Most typical users who are only interested in us-
ing the eSense values, such as Attention and Meditation, do not need to worry too much about the
POOR_SIGNAL Quality value, except to note that the Attention and Meditation values will not be
updated while POOR_SIGNAL is detected. e POOR_SIGNAL Quality value is more useful to some
applications which need to be more sensitive to noise (such as some medical or research applications),
or applications which need to know right away when there is even minor noise detected.

By default, output of this Data Value is enabled. It is typically output once a second.

eSense™ Meters

For all the different types of eSenses (i.e. Attention, Meditation), the meter value is reported on a
relative eSense scale of 1 to 100. On this scale, a value between 40 to 60 at any given moment in time
is considered "neutral", and is similar in notion to "baselines" that are established in conventional EEG
measurement techniques (though the method for determining ainkGear baseline is proprietary and
may differ from conventional EEG). A value from 60 to 80 is considered "slightly elevated", and may
be interpreted as levels being possibly higher than normal (levels of Attention or Meditation that may

September 3, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.
5

http://www.neurosky.com

Chapter 2 – ThinkGear Data Values

be higher than normal for a given person). Values from 80 to 100 are considered "elevated", meaning
they are strongly indicative of heightened levels of that eSense.

Similarly, on the other end of the scale, a value between 20 to 40 indicates "reduced" levels of the
eSense, while a value between 1 to 20 indicates "strongly lowered" levels of the eSense. ese levels
may indicate states of distraction, agitation, or abnormality, according to the opposite of each eSense.

An eSense meter value of 0 is a special value indicating the inkGear is unable to calculate an eSense
level with a reasonable amount of reliability. is may be (and usually is) due to excessive noise as
described in the POOR_SIGNAL Quality section above.

e reason for the somewhat wide ranges for each interpretation is that some parts of the eSense
algorithm are dynamically learning, and at times employ some "slow-adaptive" algorithms to adjust
to natural uctuations and trends of each user, accounting for and compensating for the fact that
EEG in the human brain is subject to normal ranges of variance and uctuation. is is part of the
reason why inkGear sensors are able to operate on a wide range of individuals under an extremely
wide range of personal and environmental conditions while still giving good accuracy and reliability.
Developers are encouraged to further interpret and adapt these guideline ranges to be ne-tuned for
their application (as one example, an application could disregard values below 60 and only react to
values between 60-100, interpreting them as the onset of heightened attention levels).

ATTENTION eSense
is unsigned one-byte value reports the current eSense Attention meter of the user, which indi-
cates the intensity of a user's level of mental "focus" or "attention", such as that which occurs during
intense concentration and directed (but stable) mental activity. Its value ranges from 0 to 100. Dis-
tractions, wandering thoughts, lack of focus, or anxiety may lower the Attention meter levels. See
eSense\texttrademark Meters above for details about interpreting eSense levels in general.

By default, output of this Data Value is enabled. It is typically output once a second.

MEDITATION eSense
is unsigned one-byte value reports the current eSense Meditation meter of the user, which indicates
the level of a user's mental "calmness" or "relaxation". Its value ranges from 0 to 100. Note that
Meditation is a measure of a person's mental levels, not physical levels, so simply relaxing all the
muscles of the body may not immediately result in a heightened Meditation level. However, for
most people in most normal circumstances, relaxing the body often helps the mind to relax as well.
Meditation is related to reduced activity by the active mental processes in the brain, and it has long
been an observed effect that closing one's eyes turns off the mental activities which process images
from the eyes, so closing the eyes is often an effective method for increasing theMeditation meter level.
Distractions, wandering thoughts, anxiety, agitation, and sensory stimuli may lower the Meditation
meter levels. See "eSense Meters" above for details about interpreting eSense levels in general.

By default, output of this Data Value is enabled. It is typically output once a second.

8BIT_RAW Wave Value

is unsigned one-byte value is equivalent to the signed RAW Wave Value (16-bit) described below,
except that it is scaled to be unsigned, and only the most signi cant 8 bits are output (where "most
signi cant" is de ned based on the speci c inkGear hardware). is makes it possible to output
raw wave values given the bandwidth restrictions of serial communications at a 9600 baud rate, at the

8BIT_RAW Wave Value
September 3, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

6

http://www.neurosky.com

Chapter 2 – ThinkGear Data Values

cost of not outputting the lowest couple bits of precision. For many applications (such as realtime
display of the graph of the raw wave), showing 8 bits of precision is sufficient, since the human eye
typically cannot rapidly discern pixels which may correspond to the lower bits of precision anyways.
If more precision is required, consider using the normal signed RAW Wave Value (16-bit) (described
below) output at a higher baud rate.

Although only the most signi cant 8 bits are output when 8BIT_RAW output is enabled, all calculations
are still performed within the inkGear based on the maximum precision of raw wave information
available to the inkGear hardware, so no information is discarded internally. Only the outputted
raw value is reduced to 8 bits, to save serial bandwidth.

By default, output of this Data Value is disabled. Like the regular signed 16-bit RAWWave Value, the
8BIT_RAWWave Value is typically output 128 times a second, or approximately once every 7.8 ms.

is Data Value is only available ininkGear modules. It is not available frominkGear ASIC (i.e.
MindSets).

RAW_MARKER Section Start

is is not really a Data Value, and is primarily only useful for debugging very precise timing and
synchronization of the raw wave, or research purposes. Currently, the value will always be 0x00.

By default, output of this Data Value is disabled. It is typically output once a second.

is Data Value is only available ininkGear modules. It is not available frominkGear ASIC (i.e.
MindSets).

RAW Wave Value (16-bit)

is Data Value consists of two bytes, and represents a single raw wave sample. Its value is a signed
16-bit integer that ranges from -32768 to 32767. e rst byte of the Value represents the high-order
bits of the twos-compliment value, while the second byte represents the low-order bits. To reconstruct
the full raw wave value, simply shift the rst byte left by 8 bits, and bitwise-or with the second byte:

short raw = (Value[0]<<8) | Value[1];

where Value[0] is the high-order byte, and Value[1] is the low-order byte.

In systems or languages where bit operations are inconvenient, the following arithmetic operations
may be substituted instead:

raw = Value[0]*256 + Value[1];
if(raw >= 32768) raw = raw - 65536;

where raw is of any signed number type in the language that can represent all the numbers from
-32768 to 32767.

Each inkGear model reports its raw wave information in only certain areas of the full -32768 to
32767 range. For example, inkGear ASIC may only report raw waves that fall between approx-
imately -2048 to 2047, while inkGear modules may only report raw waves that fall between ap-
proximately 0 to 1023. Please consult the documentation for your particular inkGear hardware for
more information.

RAW_MARKER Section Start
September 3, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

7

http://www.neurosky.com

Chapter 2 – ThinkGear Data Values

By default, output of this Data Value is disabled. When enabled, the RAWWave Value is typically out-
put by inkGear modules 128 times a second, or approximately once every 7.8ms. e inkGear
ASIC (i.e. MindSet), however, outputs this value 512 times a second, or approximately once every
2ms.

Note: Because of the high rate at which this value is output, and the number of bytes of data involved,
it is only possible to output the 16-bit RAW Wave Value on the serial communication stream at
57,600 baud and above. If raw wave information at 9600 baud is desired, consider the 8BIT_RAW
Wave Value output instead (described above).

EEG_POWER

is Data Value represents the current magnitude of 8 commonly-recognized types of EEG frequency
bands (brainwaves). It consists of eight 4-byte oating point numbers in the following order: delta (0.5
- 2.75Hz), theta (3.5 - 6.75Hz), low-alpha (7.5 - 9.25Hz), high-alpha (10 - 11.75Hz), low-beta (13 -
16.75Hz), high-beta (18 - 29.75Hz), low-gamma (31 - 39.75Hz), and mid-gamma (41 - 49.75Hz).
ese values have no units and therefore are only meaningful when compared to each other and to
themselves, for considering relative quantity and temporal uctuations. e oating point format is
standard big-endian IEEE 754, so the 32 bytes of the Values can therefore be directly cast as a float*
in C (on big-endian environments) to be used as an array of oats.

By default, output of this Data Value is disabled. When enabled, it is typically output once a second.

is version of EEG_POWER, using oating point numbers, is only available in inkGear modules,
and not in ASIC. For the ASIC equivalent, see ASIC_EEG_POWER_INT. As ofinkGear Firmware
v1.7.8, the ASIC version is the standard and preferred format for reading EEG band powers, and this
oating point format is deprecated to backwards-compatibility purposes only.

ASIC_EEG_POWER_INT

is Data Value represents the current magnitude of 8 commonly-recognized types of EEG (brain-
waves). It is the ASIC equivalent of EEG_POWER, with the main difference being that this Data Value
is output as a series of eight 3-byte unsigned integers instead of 4-byte oating point numbers. ese
3-byte unsigned integers are in big-endian format.

e eight EEG powers are output in the following order: delta (0.5 - 2.75Hz), theta (3.5 - 6.75Hz),
low-alpha (7.5 - 9.25Hz), high-alpha (10 - 11.75Hz), low-beta (13 - 16.75Hz), high-beta (18 -
29.75Hz), low-gamma (31 - 39.75Hz), and mid-gamma (41 - 49.75Hz). ese values have no units
and therefore are only meaningful compared to each other and to themselves, to consider relative
quantity and temporal uctuations.

By default, output of this Data Value is enabled, and is typically output once a second.

As of inkGear Firmware v1.7.8, this form of EEG_POWER is the standard output format for EEG
band powers, while the one described in EEG_POWER is only kept for backwards compatibility and
only accessible through command switches. Prior to v1.7.8, the EEG_POWER was the standard.

EEG_POWER
September 3, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

8

http://www.neurosky.com

Chapter 2 – ThinkGear Data Values

Eye Blink Strength

is unsigned one byte value reports the intensity of the user's most recent eye blink. Its value ranges
from 1 to 255 and it is reported whenever an eye blink is detected. e value indicates the relative
intensity of the blink, and has no units.

Note: is data value is currently only available via the TGCD and TGC APIs. It is
not directly available as output from any current inkGear hardware. For TGCD, see the
TG_DATA_BLINK_STRENGTH data type for use with the TG_GetValueStatus() and TG_GetValue()
functions.

Mind-wandering Level

is unsigned one byte value reports the intensity of the user's Mind-wandering Level. Its value ranges
from 0 to 10. A value of 0 means the Level is N/A. A value from 1-10 indicates the Level (with higher
values indicating higher levels of Mind-wandering.

Eye Blink Strength
September 3, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

9

http://www.neurosky.com

Chapter 3

ThinkGear Packets

inkGear components deliver their digital data as an asynchronous serial stream of bytes. e serial
stream must be parsed and interpreted as inkGear Packets in order to properly extract and interpret
the inkGear Data Values described in the chapter above.

A inkGear Packet is a packet format consisting of 3 parts:

1. Packet Header

2. Packet Payload

3. Payload Checksum

inkGear Packets are used to deliverData Values (described in the previous chapter) from ainkGear
module to an arbitrary receiver (a PC, another microprocessor, or any other device that can receive a
serial stream of bytes). Since serial I/O programming APIs are different on every platform, operating
system, and language, it is outside the scope of this document (see your platform's documentation for
serial I/O programming). is chapter will only cover how to interpret the serial stream of bytes into
inkGear Packets, Payloads, and nally into the meaningful Data Values described in the previous
chapter.

e Packet format is designed primarily to be robust and exible: Combined, the Header and Check-
sum provide data stream synchronization and data integrity checks, while the format of the Data
Payload ensures that new data elds can be added to (or existing data elds removed from) the Packet
in the future without breaking any Packet parsers in any existing applications/devices. is means that
any application that implements a inkGear Packet parser properly will be able to use newer models
of inkGear modules most likely without having to change their parsers or application at all, even if
the newer inkGear includes new data elds.

Packet Structure

Packets are sent as an asynchronous serial stream of bytes. e transport mediummay be UART, serial
COM, USB, bluetooth, le, or any other mechanism which can stream bytes.

Each Packet begins with its Header, followed by its Data Payload, and ends with the Payload's Check-
sum Byte, as follows:

[SYNC] [SYNC] [PLENGTH] [PAYLOAD...] [CHKSUM]
_______________________ _____________ ____________
^^^^^^^^(Header)^^^^^^^ ^^(Payload)^^ ^(Checksum)^

e [PAYLOAD…] section is allowed to be up to 169 bytes long, while each of [SYNC], [PLENGTH],
and [CHKSUM] are a single byte each. is means that a complete, valid Packet is a minimum of 4
bytes long (possible if the Data Payload is zero bytes long, i.e. empty) and a maximum of 173 bytes
long (possible if the Data Payload is the maximum 169 bytes long).

September 3, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.
10

http://www.neurosky.com

Chapter 3 – ThinkGear Packets

A procedure for properly parsing inkGear Packets is given below in Step-By-Step Guide to Parsing
a Packet.

Packet Header
e Header of a Packet consists of 3 bytes: two synchronization [SYNC] bytes (0xAA 0xAA), followed
by a [PLENGTH] (Payload length) byte:

[SYNC] [SYNC] [PLENGTH]

^^^^^^^^(Header)^^^^^^^

e two [SYNC] bytes are used to signal the beginning of a new arriving Packet and are bytes with
the value 0xAA (decimal 170). Synchronization is two bytes long, instead of only one, to reduce the
chance that [SYNC] (0xAA) bytes occurring within the Packet could be mistaken for the beginning
of a Packet. Although it is still possible for two consecutive [SYNC] bytes to appear within a Packet
(leading to a parser attempting to begin parsing the middle of a Packet as the beginning of a Packet) the
[PLENGTH] and [CHKSUM] combined ensure that such a "mis-sync'd Packet" will never be accidentally
interpreted as a valid packet (see Payload Checksum below for more details).

e [PLENGTH] byte indicates the length, in bytes, of the Packet's Data Payload [PAYLOAD…] section,
and may be any value from 0 up to 169. Any higher value indicates an error (PLENGTH TOO LARGE).
Be sure to note that [PLENGTH] is the length of the Packet'sData Payload, NOT of the entire Packet.
e Packet's complete length will always be [PLENGTH] + 4.

Data Payload
e Data Payload of a Packet is simply a series of bytes. e number of Data Payload bytes in the
Packet is given by the [PLENGTH] byte from the Packet Header. e interpretation of the Data Payload
bytes into the inkGear Data Values described in Chapter 1 is de ned in detail in the Data Payload
Structure section below. Note that parsing of the Data Payload typically should not even be attempted
until after the Payload Checksum Byte [CHKSUM] is veri ed as described in the following section.

Payload Checksum
e [CHKSUM] Byte must be used to verify the integrity of the Packet's Data Payload. e Payload's
Checksum is de ned as:

1. summing all the bytes of the Packet's Data Payload

2. taking the lowest 8 bits of the sum

3. performing the bit inverse (one's compliment inverse) on those lowest 8 bits

A receiver receiving a Packet must use those 3 steps to calculate the checksum for the Data Payload
they received, and then compare it to the [CHKSUM] Checksum Byte received with the Packet. If the
calculated payload checksum and received [CHKSUM] values do not match, the entire Packet should
be discarded as invalid. If they do match, then the receiver may procede to parse the Data Payload as
described in the "Data Payload Structure" section below.

Packet Structure
September 3, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

11

http://www.neurosky.com

Chapter 3 – ThinkGear Packets

Data Payload Structure

Once the Checksum of a Packet has been veri ed, the bytes of the Data Payload can be parsed. e
Data Payload itself consists of a continuous series of Data Values, each contained in a series of bytes
called a DataRow. Each DataRow contains information about what the Data Value represents, the
length of the Data Value, and the bytes of the Data Value itself. erefore, to parse a Data Payload,
one must parse each DataRow from it until all bytes of the Data Payload have been parsed.

DataRow Format
A DataRow consists of bytes in the following format:

([EXCODE]...) [CODE] ([VLENGTH]) [VALUE...]
____________________ ____________ ___________
^^^^(Value Type)^^^^ ^^(length)^^ ^^(value)^^

Note: Bytes in parentheses are conditional, meaning that they only appear in some DataRows, and
not in others. See the following description for details.

e DataRow may begin with zero or more [EXCODE] (Extended Code) bytes, which are bytes with
the value 0x55. e number of [EXCODE] bytes indicates the Extended Code Level. e Extended
Code Level, in turn, is used in conjuction with the [CODE] byte to determine what type of Data
Value this DataRow contains. Parsers should therefore always begin parsing a DataRow by counting
the number of [EXCODE] (0x55) bytes that appear to determine the Extended Code Level of the
DataRow's [CODE].

e [CODE] byte, in conjunction with the Extended Code Level, indicates the type of Data Value
encoded in the DataRow. For example, at Extended Code Level 0, a [CODE] of 0x04 indicates that
the DataRow contains an eSense Attention value. For a list of de ned [CODE] meanings, see the
CODEDe nitions Table below. Note that the [EXCODE] byte of 0x55will never be used as a [CODE]
(incidentally, the [SYNC] byte of 0xAA will never be used as a [CODE] either).

If the [CODE] byte is between 0x00 and 0x7F, then the the [VALUE…] is implied to be 1 byte long
(referred to as a Single-Byte Value). In this case, there is no [VLENGTH] byte, so the single [VALUE]
byte will appear immediately after the [CODE] byte.

If, however, the [CODE] is greater than 0x7F, then a [VLENGTH] ("Value Length") byte immediately
follows the [CODE] byte, and this is the number of bytes in [VALUE…] (referred to as a Multi-Byte
Value). ese higher CODEs are useful for transmitting arrays of values, or values that cannot be t
into a single byte.

e DataRow format is de ned in this way so that any properly implemented parser will not break
in the future if new CODEs representing arbitrarily long DATA… values are added (they simply ignore
unrecognized CODEs, but do not break in parsing), the order of CODEs is rearranged in the Packet, or
if some CODEs are not always transmitted in every Packet.

A procedure for properly parsing Packets and DataRows is given below in Step-By-Step Guide to
Parsing a Packet and Step-By-Step Guide to Parsing DataRows in a Packet Payload, respectively.

Data Payload Structure
September 3, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

12

http://www.neurosky.com

Chapter 3 – ThinkGear Packets

CODE Definitions Table
Single-Byte CODEs

Extended (Byte)
Code Level [CODE] [LENGTH] Data Value Meaning
---------- ------ -------- ------------------

0 0x02 - POOR_SIGNAL Quality (0-255)
0 0x03 - HEART_RATE (0-255)

Once/s on EGO.
0 0x04 - ATTENTION eSense (0 to 100)
0 0x05 - MEDITATION eSense (0 to 100)
0 0x06 - 8BIT_RAW Wave Value (0-255)
0 0x07 - RAW_MARKER Section Start (0)

Multi-Byte CODEs

Extended (Byte)
Code Level [CODE] [LENGTH] Data Value Meaning
---------- ------ -------- ------------------

0 0x80 2 RAW Wave Value: a single big-endian
16-bit two's-compliment signed value
(high-order byte followed by
low-order byte) (-32768 to 32767)

0 0x81 32 EEG_POWER: eight big-endian 4-byte
IEEE 754 floating point values
representing delta, theta, low-alpha
high-alpha, low-beta, high-beta,
low-gamma, and mid-gamma EEG band
power values

0 0x83 24 ASIC_EEG_POWER: eight big-endian
3-byte unsigned integer values
representing delta, theta, low-alpha
high-alpha, low-beta, high-beta,
low-gamma, and mid-gamma EEG band
power values

Any 0x55 - NEVER USED (reserved for [EXCODE])
Any 0xAA - NEVER USED (reserved for [SYNC])

(any Extended Code Level/CODE combinations not listed in the table above have not yet been de ned,
but may be added at any time in the future)

For detailed explanations of the meanings of each type of Data Value, please refer to the chapter on
inkGear Data Values.

Whenever ainkGear module is powered on, it will always start in a standard con guration in which
only some of the Data Values listed above will be output by default. To enable or disable the types of
Data Values output by the inkGear, refer to the advanced chapter inkGear Command Bytes.

* See special note for CODE B0:

CODE B0

Data Payload Structure
September 3, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

13

http://www.neurosky.com

Chapter 3 – ThinkGear Packets

An Luo
to Arnaud, Tom, me

show details Feb 4 (4 days ago)

Hi guys,

[BACKGOUND]

Format for our non-contact multi-sensor board (20 bytes) : AA AA 10
B0 0E DataH(1) DataL(1) DataH(2) DataL(2) ... DataH(7)
DataL(7) CS

As I have been talking about, we have an issue with our BT device on
the non-contact support board, i.e., the BT may stop working if the
data packets contain a "02" byte.

I've being trying to see what's causing it and when it's safe to send
out 02s, but so far haven't found a clue yet. So the strategy I am
using now is simply not sending out any 02 at all. In our previous
data format there are three places that could contain 02:

1) the higher 8 bits of a sample (DataH) : ranges from 00~03;
2) the lower 8 bit of a sample (DataL) : ranges from 00~0xFF;
3) the check sum (CS) : ranges from 00~0xFF.

For 1 we could add a constant, say, 0x10 or 0x20 to DataH, so 02 won't
be sent out.
For 2 and 3 a simple solution would be to change all 02s to 03s, but
this would cause 2 issues:

1) when we see a 03 in DataL, we don't know whether it is actually a
02 or a 03.
2) when the CS is changed to 03, the decoder would think there is an
error in the packet and would cause data loss.

[SOLUTION]

Kelvin and I discussed about this and we came up with a solution: any
change will be marked on DataH.

1) if DataL of a sample is 0x02: we change it to 0x03 and add
0x10 to DataH of that sample.
2) if DataL of a sample is not 0x02: we output it and
add 0x20 to DataH of that sample.
3) if CS is 0x02: we add another 0x20 to the modified DataH of the
7th's channel sample, and recompute CS (so it cannot be 02 anymore).
This means the 7th channel sample could be changed to 0x3X03 (if its
true DataL is also 02) or 0x4XXX (if its true DataL is not 02).

In this way the 2 issues can both be solved and it requires less
change on the decoder side:
1) the CS will always be correct (and does not contain 02)
2) when decoding the data, the true DataL = the received DataL - the
5th bit of DataH of that sample.

I have implemented this in the firmware. If you have any questions or
suggestions, please let me know.

Data Payload Structure
September 3, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

14

http://www.neurosky.com

Chapter 3 – ThinkGear Packets

Thanks,
An

Example Packet

e following is a typical Packet. Aside from the [SYNC], [PLENGTH], and [CHKSUM] bytes, all the
other bytes (bytes [3] to [10]) are part of the Packet's Data Payload. Note that the DataRows
within the Payload are not guaranteed to appear in every Packet, nor are any DataRows that do appear
guaranteed by the Packet speci cation to appear in any particular order.

byte: value // Explanation

[0]: 0xAA // [SYNC]
[1]: 0xAA // [SYNC]
[2]: 0x08 // [PLENGTH] (payload length) of 8 bytes
[3]: 0x02 // [CODE] POOR_SIGNAL Quality
[4]: 0x20 // Some poor signal detected (32/255)
[5]: 0x01 // [CODE] BATTERY Level
[6]: 0x7E // Almost full 3V of battery (126/127)
[7]: 0x04 // [CODE] ATTENTION eSense
[8]: 0x12 // eSense Attention level of 18%
[9]: 0x05 // [CODE] MEDITATION eSense
[10]: 0x60 // eSense Meditation level of 96%
[11]: 0xE3 // [CHKSUM] (1's comp inverse of 8-bit Payload sum of 0x1C)

Step-By-Step Guide to Parsing a Packet

1. Keep reading bytes from the stream until a [SYNC] byte (0xAA) is encountered.

2. Read the next byte and ensure it is also a [SYNC] byte

• If not a [SYNC] byte, return to step 1.

• Otherwise, continue to step 3.

3. Read the next byte from the stream as the [PLENGTH].

• If [PLENGTH] is 170 ([SYNC]), then repeat step 3.

• If [PLENGTH] is greater than 170, then return to step 1 (PLENGTH TOO LARGE).

• Otherwise, continue to step 4.

4. Read the next [PLENGTH] bytes of the [PAYLOAD…] from the stream, saving them into a storage
area (such as an unsigned char payload[256] array). Sum up each byte as it is read by
incrementing a checksum accumulator (checksum += byte).

5. Take the lowest 8 bits of the checksum accumulator and invert them. Here is the C code:

checksum &= 0xFF;
checksum = ~checksum & 0xFF;

6. Read the next byte from the stream as the[CHKSUM] byte.

Example Packet
September 3, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

15

http://www.neurosky.com

Chapter 3 – ThinkGear Packets

• If the [CHKSUM] does not match your calculated chksum (CHKSUM FAILED).

• Otherwise, you may now parse the contents of the Payload into DataRows to obtain the
Data Values, as described below.

• In either case, return to step 1.

Step-By-Step Guide to Parsing DataRows in a Packet Payload
Repeat the following steps for parsing a DataRow until all bytes in the payload[] array ([PLENGTH]
bytes) have been considered and parsed:

1. Parse and count the number of [EXCODE] (0x55) bytes that may be at the beginning of the
current DataRow.

2. Parse the [CODE] byte for the current DataRow.

3. If [CODE] >= 0x80, parse the next byte as the [VLENGTH] byte for the current DataRow.

4. Parse and handle the [VALUE…] byte(s) of the current DataRow, based on the DataRow's [EX-
CODE] level, [CODE], and [VLENGTH].

5. If not all bytes have been parsed from the payload[] array, return to step 1. to continue parsing
the next DataRow.

Sample C Code for Parsing a Packet
e following is an example of a program, implemented inC, which reads from a stream and (correctly)
parses Packets continuously. Search for the word TODO for the two sections which would need to
be modi ed to be appropriate for your application.

Note: For simplicity, error checking and handling for standard library function calls have been omit-
ted. A real application should probably detect and handle all errors gracefully.

#include <stdio.h>

#define SYNC 0xAA
#define EXCODE 0x55

int parsePayload(unsigned char *payload, unsigned char pLength) {

unsigned char bytesParsed = 0;
unsigned char code;
unsigned char length;
unsigned char extendedCodeLevel;
int i;

/* Loop until all bytes are parsed from the payload[] array... */
while(bytesParsed < pLength) {

/* Parse the extendedCodeLevel, code, and length */
extendedCodeLevel = 0;
while(payload[bytesParsed] == EXCODE) {

extendedCodeLevel++;
bytesParsed++;

}
code = payload[bytesParsed++];

Step-By-Step Guide to Parsing a Packet
September 3, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

16

http://www.neurosky.com

Chapter 3 – ThinkGear Packets

if(code & 0x80) length = payload[bytesParsed++];
else length = 1;

/* TODO: Based on the extendedCodeLevel, code, length,
* and the [CODE] Definitions Table, handle the next
* "length" bytes of data from the payload as
* appropriate for your application.
*/
printf("EXCODE level: %d CODE: 0x%02X length: %d\n",

extendedCodeLevel, code, length);
printf("Data value(s):");
for(i=0; i<length; i++) {

printf(" %02X", payload[bytesParsed+i] & 0xFF);
}
printf("\n");

/* Increment the bytesParsed by the length of the Data Value */
bytesParsed += length;

}

return(0);
}

int main(int argc, char **argv) {

int checksum;
unsigned char payload[256];
unsigned char pLength;
unsigned char c;
unsigned char i;

/* TODO: Initialize 'stream' here to read from a serial data
* stream, or whatever stream source is appropriate for your
* application. See documentation for "Serial I/O" for your
* platform for details.
*/
FILE *stream = 0;
stream = fopen("COM4", "r");

/* Loop forever, parsing one Packet per loop... */
while(1) {

/* Synchronize on [SYNC] bytes */
fread(&c, 1, 1, stream);
if(c != SYNC) continue;
fread(&c, 1, 1, stream);
if(c != SYNC) continue;

/* Parse [PLENGTH] byte */
while(true) {

fread(&pLength, 1, 1, stream);
if(pLength ~= 170) break;

}
if(pLength > 169) continue;

/* Collect [PAYLOAD...] bytes */
fread(payload, 1, pLength, stream);

Step-By-Step Guide to Parsing a Packet
September 3, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

17

http://www.neurosky.com

Chapter 3 – ThinkGear Packets

/* Compute [PAYLOAD...] chksum */
checksum = 0;
for(i=0; i<pLength; i++) checksum += payload[i];
checksum &= 0xFF;
checksum = ~checksum & 0xFF;

/* Parse [CKSUM] byte */
fread(&c, 1, 1, stream);

/* Verify [PAYLOAD...] chksum against [CKSUM] */
if(c != checksum) continue;

/* Since [CKSUM] is OK, parse the Data Payload */
parsePayload(payload, pLength);

}

return(0);
}

ThinkGearStreamParser C API
einkGearStreamParser API is a library which implements the parsing procedure described above
and abstracts it into two simple functions, so that the programmer does not need to worry about
parsing Packets and DataRows at all. All that is left is for the programmer to get the bytes from the
data stream, stuff them into the parser, and then de ne what their program does with the Value[]
bytes from each DataRow that is received and parsed.

e source code for theinkGearStreamParser API is provided, and consists of a .h header le and a
.c source le. It is implemented in pure ANSI C for maximum portability to all platforms (including
microprocessors).

Using the API consists of 3 steps:

1. De ne a data handler (callback) function which handles (acts upon) Data Values as they're
received and parsed.

2. Initialize a ThinkGearStreamParser struct by calling the THINKGEAR_initParser() func-
tion.

3. As each byte is received from the data stream, the program passes it to the THINKGEAR_parseByte()
function. is function will automatically call the data handler function de ned in 1) whenever
a Data Value is parsed.

e following subsections are excerpts from the ThinkGearStreamParser.h header le, which serves
as the API documentation.

Constants

/* Parser types */
#define PARSER_TYPE_NULL 0x00
#define PARSER_TYPE_PACKETS 0x01 /* Stream bytes as ThinkGear Packets */
#define PARSER_TYPE_2BYTERAW 0x02 /* Stream bytes as 2-byte raw data */

/* Data CODE definitions */
#define PARSER_BATTERY_CODE 0x01
#define PARSER_POOR_SIGNAL_CODE 0x02
#define PARSER_ATTENTION_CODE 0x04

Step-By-Step Guide to Parsing a Packet
September 3, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

18

http://www.neurosky.com

Chapter 3 – ThinkGear Packets

#define PARSER_MEDITATION_CODE 0x05
#define PARSER_RAW_CODE 0x80

THINKGEAR_initParser()

/**
* @param parser Pointer to a ThinkGearStreamParser object.
* @param parserType One of the PARSER_TYPE_* constants defined
* above: PARSER_TYPE_PACKETS or
* PARSER_TYPE_2BYTERAW.
* @param handleDataValueFunc A user-defined callback function that will
* be called whenever a data value is parsed
* from a Packet.
* @param customData A pointer to any arbitrary data that will
* also be passed to the handleDataValueFunc
* whenever a data value is parsed from a
* Packet.
*
* @return -1 if @c parser is NULL.
* @return -2 if @c parserType is invalid.
* @return 0 on success.
*/
int
THINKGEAR_initParser(ThinkGearStreamParser *parser, unsigned char parserType,

void (*handleDataValueFunc)(
unsigned char extendedCodeLevel,
unsigned char code, unsigned char numBytes,
const unsigned char *value, void *customData),

void *customData);

THINKGEAR_parseByte()

/**
* @param parser Pointer to an initialized ThinkGearDataParser object.
* @param byte The next byte of the data stream.
*
* @return -1 if @c parser is NULL.
* @return -2 if a complete Packet was received, but the checksum failed.
* @return 0 if the @c byte did not yet complete a Packet.
* @return 1 if a Packet was received and parsed successfully.
*
*/
int
THINKGEAR_parseByte(ThinkGearStreamParser *parser, unsigned char byte);

Example

Here is an example program using the inkGearStreamParser API. It is very similar to the example
program described above, simply printing received Data Values to stdout:

#include <stdio.h>
#include "ThinkGearStreamParser.h"

/**
* 1) Function which acts on the value[] bytes of each ThinkGear DataRow as it is received.
*/
void
handleDataValueFunc(unsigned char extendedCodeLevel,

Step-By-Step Guide to Parsing a Packet
September 3, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

19

http://www.neurosky.com

Chapter 3 – ThinkGear Packets

unsigned char code,
unsigned char valueLength,
const unsigned char *value,
void *customData) {

if(extendedCodeLevel == 0) {

switch(code) {

/* [CODE]: ATTENTION eSense */
case(0x04):

printf("Attention Level: %d\n", value[0] & 0xFF);
break;

/* [CODE]: MEDITATION eSense */
case(0x05):

printf("Meditation Level: %d\n", value[0] & 0xFF);
break;

/* Other [CODE]s */
default:

printf("EXCODE level: %d CODE: 0x%02X vLength: %d\n",
extendedCodeLevel, code, valueLength);

printf("Data value(s):");
for(i=0; i<valueLength; i++) printf(" %02X", value[i] & 0xFF);
printf("\n");

}
}

}

/**
* Program which reads ThinkGear Data Values from a COM port.
*/
int
main(int argc, char **argv) {

/* 2) Initialize ThinkGear stream parser */
ThinkGearStreamParser parser;
THINKGEAR_initParser(&parser, PARSER_TYPE_PACKETS,

handleDataValueFunc, NULL);

/* TODO: Initialize 'stream' here to read from a serial data
* stream, or whatever stream source is appropriate for your
* application. See documentation for "Serial I/O" for your
* platform for details.
*/
FILE *stream = fopen("COM4", "r");

/* 3) Stuff each byte from the stream into the parser. Every time
* a Data Value is received, handleDataValueFunc() is called.
*/
unsigned char streamByte;
while(1) {

fread(&streamByte, 1, stream);
THINKGEAR_parseByte(&parser, streamByte);

}
}

Step-By-Step Guide to Parsing a Packet
September 3, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

20

http://www.neurosky.com

Chapter 3 – ThinkGear Packets

A few things to note:

• e handleDataValueFunc() callback should be implemented to execute quickly, so as not
to block the thread which is reading from the data stream. A more robust (and useful) program
would probably spin off the thread which reads from the data stream and calls handleDataVal-
ueFunc(), and de ne handleDataValueFunc() to simply save the Data Values it receives,
while the main thread actually uses the saved values for displaying to screen, controlling a game,
etc. reading is outside the scope of this manual.

• e code for opening a serial communication port data stream for reading varies by operating
system and platform. Typically, it is very similar to opening a normal le for reading. Se-
rial communication is outside the scope of this manual, so please consult the documentation
for "Serial I/O" for your platform for details. As an alternative, you may use the inkGear
Communications Driver (TGCD) API, which can take care of opening and reading from se-
rial I/O streams on some platforms for you. Use of that interface is described in the devel-
oper_tools_2.1_development_guide and TGCD API documentation.

• Most error handling has been omitted from the above code for clarity. A properly written pro-
gram should check all error codes returned by functions. Please consult the ThinkGearStream-
Parser.h header le for details about function parameters and return values.

Step-By-Step Guide to Parsing a Packet
September 3, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

21

http://www.neurosky.com

Chapter 4

ThinkGear Command Bytes

Upon power-on, inkGear modules/AISCs always start in their factory-programmed default state.
For example, inkGear modules with FWv1.7.13 and earlier always start at 9600 baud, and out-
putting only battery, poor signal, ASIC_EEG, Attention, and Meditation values. is con guration
is intended to be sufficient for most toy, game, and demo applications. After power-on however, the
inkGear module can be sent Command Bytes in order to change its con guration, such as switch-
ing to 57.6k baud, or enabling raw wave values output. inkGear Command Bytes are intended as
an advanced feature for performing some customization of the behavior inkGear hardware.

inkGear Command Bytes are sent to the inkGear hardware through the same UART interface
used to receive Packet bytes. A Command Byte is a single byte (8-bit) value with certain bits set. is
section describes which bits to set in order to change the con guration of a inkGear module.

Note that after being power cycled, the inkGear module returns to its default settings described
above.

Also note that, before an application sends any command bytes to theinkGear, it should rst make
sure it has read at least one complete, valid Packet from the inkGear, to ensure it sends Command
Bytes at the proper baudrate. Sending Command Bytes at the wrong baudrate may result in the
inkGear being rendered inoperable until it is power-cycled (reset back to default con guration).

Command Byte Syntax

A Command Byte is formed by 8 bits, each of which are either set or unset. e lowest (least signi -
cant) four bits are used to control modes, such as 9600 vs. 57.6k baud mode, attention output enabled
or disabled mode, etc. e upper (most signi cant) four bits, known as the "Command Page", de ne
the meaning of the lower four bits.

For example, a Command Byte of 0x0E has the bit pattern of 0000 1110. e upper (most sig-
ni cant) four bits are 0000, which refers to Command Page zero. Looking on the table below for
Command Page zero (for 1.6 rmware), we see that the lower four bits of 1110 are used to control
the settings for baudrate, raw wave output, meditation output, and attention output, respectively.
Because the baudrate bit is 1, the baudrate of the module will be set to 57.6k mode. Because the raw
wave output and meditation output bits are each 1, each of those types of output will be enabled.
Because the attention output bit is 0, attention output becomes disabled. Hence, sending a byte of
0x0E to the inkGear module instructs it to operate at 57.6k baud mode with raw and meditation
values output in packets, but no attention values.

Please note that the ordering of the Command Pages signi cantly changed between versions 1.6 and
1.7 of the module rmware. Also note that inkGear ASIC (i.e. MindSets) only recognize the 4
Command Bytes on Page 0 for 1.7 rmware; all other Command Bytes may put theinkGear ASIC
into an inoperable state until it is power-cycled. Please refer to the documentation that came with your
inkGear hardware, along with the appropriate table below to determine which Command Bytes are
valid for your hardware.

September 3, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.
22

http://www.neurosky.com

Chapter 4 – ThinkGear Command Bytes

Firmware 1.6 Command Byte Table

Page 0 (0000____) (0x0_): **
bit[0] (____0001): Set/unset to enable/disable attention output
bit[1] (____0010): Set/unset to enable/disable meditation output
bit[2] (____0100): Set/unset to enable/disable raw wave output
bit[3] (____1000): Set/unset to use 57.6k/9600 baud rate

Page 1 (0001____) (0x1_):
bit[0] (____0001): Set/unset to enable/disable EEG powers output
bit[1] (____0010): Set/unset to use 10-bit/8-bit raw wave output

Page 15 (1111____) (0xF_):
bit[0] (____0001): Set/unset to enable/disable Testmode

**: After sending this Page byte, the application itself must change itself to begin communicating
at the new requested baud rate, and then wait at that new requested baud rate for a complete, valid
Packet to be received from the inkGear before attempting to send any other command bytes to the
inkGear. Sending another command byte before performing this check may put the inkGear
module into an indeterminate (and inoperable) state until it is power-cycled.

Firmware 1.7 Command Byte Table

Important: inkGear ASIC only recognizes Command Bytes from Page 0 below. Any other Com-
mand Bytes may put it into an inoperable state until it is power cycled.

Page 0 (0000____) (0x0_): STANDARD/ASIC CONFIG COMMANDS* **
00000000 (0x00): 9600 baud, normal output mode
00000001 (0x01): 1200 baud, normal output mode
00000010 (0x02): 57.6k baud, normal+raw output mode
00000011 (0x03): 57.6k baud, FFT output mode

Page 1 (0001____) (0x1_): RAW WAVE OUTPUT
bit[0] (____0001): Set/unset to enable/disable raw wave output
bit[1] (____0010): Set/unset to use 10-bit/8-bit raw wave output
bit[2] (____0100): Set/unset to enable/disable raw marker output
bit[3] (____1000): Ignored

Page 2 (0010____) (0x2_): MEASUREMENTS OUTPUTS
bit[0] (____0001): Set/unset to enable/disable poor quality output
bit[1] (____0010): Set/unset to enable/disable EEG powers (int) output
bit[2] (____0100): Set/unset to enable/disable EEG powers (legacy/floats) output
bit[3] (____1000): Set/unset to enable/disable battery output***

Page 3 (0011____) (0x3_): ESENSE OUTPUTS
bit[0] (____0001): Set/unset to enable/disable attention output
bit[1] (____0010): Set/unset to enable/disable meditation output
bit[2] (____0100): Ignored
bit[3] (____1000): Ignored

Page 6 (0110____) (0x6_): BAUD RATE SELECTION* **
01100000 (0x60): No change
01100001 (0x61): 1200 baud

Firmware 1.6 Command Byte Table
September 3, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

23

http://www.neurosky.com

Chapter 4 – ThinkGear Command Bytes

01100010 (0x62): 9600 baud
01100011 (0x63): 57.6k baud

*: Note that pages 0 and 6 are a little different from most command pages. While most pages use each
of the 4 bits as an enable/disable switch commands for separate setting, pages 0 and 6 use the entire
command value as a single command.

**: After sending this Page byte, the application itself must change itself to begin communicating
at the new requested baud rate, and then wait at that new requested baud rate for a complete, valid
Packet to be received from the inkGear before attempting to send any other command bytes to the
inkGear. Sending another command byte before performing this check may put the inkGear
module into an indeterminate (and inoperable) state until it is power-cycled.

***: Battery level sampling not available on some inkGear models.

Firmware 1.7 Command Byte Table
September 3, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

24

http://www.neurosky.com

	Introduction
	ThinkGear Data Values
	POOR_SIGNAL Quality
	eSense� Meters
	ATTENTION eSense
	MEDITATION eSense

	8BIT_RAW Wave Value
	RAW_MARKER Section Start
	RAW Wave Value (16-bit)
	EEG_POWER
	ASIC_EEG_POWER_INT
	Eye Blink Strength
	Mind-wandering Level

	ThinkGear Packets
	Packet Structure
	Packet Header
	Data Payload
	Payload Checksum

	Data Payload Structure
	DataRow Format
	CODE Definitions Table

	Example Packet
	Step-By-Step Guide to Parsing a Packet
	Step-By-Step Guide to Parsing DataRows in a Packet Payload
	Sample C Code for Parsing a Packet
	ThinkGearStreamParser C API

	ThinkGear Command Bytes
	Command Byte Syntax
	Firmware 1.6 Command Byte Table
	Firmware 1.7 Command Byte Table

