
NS??? Application Note September 22, 2011

Android Development Guide for
ThinkGear

Features

• Develop Android applications that utilize inkGear technology

• Downloadable inkGear-enabled sample Android project with full sample code

Introduction

anks to the availability of the MindWave Mobile, developers can now create Android applications
that can sense users' brainwaves. is development guide will walk you through the process of creating
a MindWave-capable Android application.

is guide is written for programmers who are familiar with Android development on Eclipse. More
information on how to develop on Android can be found at http://developer.android.com.

SDK Bugs and Issues

e SDK currently has no known bugs nor issues.

If you encounter any bugs or issues, please visit http://support.neurosky.com, or contact support@neurosky.com.

Supported Hardware

einkGear Android API supports the following hardware:

• MindSet

• MindWave Mobile

• inkCap 1.0

• TGAP DS SDK

• EGO

• MindBand

MindWave Mobile
e MindWave Mobile utilizes Bluetooth to connect to an Android device.

http://developer.android.com
http://support.neurosky.com


Section 5 – Using the ThinkGear API

Usage

1. Open the Settings app on the Android device

2. Navigate to Wireless and network and enable Bluetooth if not already enabled

3. Go to Bluetooth settings

4. Power on the MindWave Mobile

5. MindWave Mobile will show up in the list of devices

6. Touch MindWave Mobile and pairing will complete automatically

(a) If prompted for a passkey, enter in '0000'

Note: Consult the MindWave Mobile User guide for pairing details.

Broadcast data

Data is sent from the MindWave Mobile with the following information:

• Poor signal value (1Hz)

• eSense Attention (1Hz)

• eSense Meditation (1Hz)

• EEG power bands (1Hz)

• Raw EEG data (512Hz)

• Blink (When a blink is detected)

Using the ThinkGear API

For most applications, using the inkGear Android API is recommended. It reduces the complexity
of managing inkGear accessory connections and handles parsing of the data stream from these
inkGear accessories. To make a brainwave-sensing application, all you need to do is to import a
library, add the requisite setup and teardown functions, and create a handler object to which accessory
event notiëcations will be dispatched.

Some limitations of the inkGear Android API include:

• Can only communicate with one attached inkGear-enabled accessory

eAndroid API Reference contains descriptions of the classes and protocols available in theinkGear
Android API.

einkGear Android SDK also includes the HelloEEG sample project (contained in src/), which
is a simple Android application that displays the data coming from a MindWave Mobile headset.

September 22, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.
2

http://www.neurosky.com


Section 5 – Using the ThinkGear API

Configuring Your Environment
1. Add the ThinkGear.jar ële to your project in the lib folder. If the lib folder does not exist,

create it. en right-click on ThinkGear.jar in the package explorer inspector and selectBuild
Path » Add to build path.

2. en import the following classes into your application actvity:

import com.neurosky.thinkgear.TGData;
import com.neurosky.thinkgear.TGDevice;
import com.android.bluetooth.BluetoothAdapter;
import com.android.bluetooth.BluetoothDevice;
import com.android.util.Log;

In order for your application to access the Bluetooth API's, your application must declare the BLUE-
TOOTH permission. Declare the Bluetooth permission in your application manifest ële.

<manifest ... >
<uses-permission android:name="android.permission.BLUETOOTH" />
...

</manifest>

Setting Up the TGDevice
Declare a TGDevice and a BluetoothAdapter instance in your activity class

public class HelloEEGActivity extends Activity {
//...
TGDevice tgDevice;
BluetoothAdapter btAdapter;
//...

Initialize tgDevice and btAdapter in the onCreate() method

public void onCreate(Bundle savedInstanceState) {
//...

btAdapter = BluetoothAdapter.getDefaultAdapter();
if(btAdapter != null) {

tgDevice = new TGDevice(btAdapter, handler);
}

//...
}

Handling Data Receipt
e TGDevice will communicate with the application through messages send to a handler function.
Add the following code to your application class:

private final Handler handler = new Handler() {
@Override
public void handleMessage(Message msg) {
switch (msg.what) {
case TGDevice.MSG_STATE_CHANGE:
switch (msg.arg1) {
case TGDevice.STATE_IDLE:
break;

Configuring Your Environment
September 22, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

3

http://www.neurosky.com


Section 5 – Using the ThinkGear API

case TGDevice.STATE_CONNECTING:
break;
case TGDevice.STATE_CONNECTED:
device.start();

break;
case TGDevice.STATE_DISCONNECTED:
break;
case TGDevice.STATE_NOT_FOUND:
case TGDevice.STATE_NOT_PAIRD:
default:
break;

}
break;
case TGDevice.POOR_SIGNAL:

Log.v("HelloEEG", "PoorSignal: " + msg.arg1);
case TGDevice.MSG_ATTENTION:

Log.v("HelloEEG", "Attention: " + msg.arg1);
break;

case TGDevice.MSG_RAW_DATA:
int rawValue = msg.arg1;

break;
case TGDevice.MSG_EEG_POWER:

TGEegPower ep = (TGEegPower)msg.arg1;
Log.v("HelloEEG", "Delta: " + ep.delta);

default:
break;

}
}

};

e following table details each message type:

Handling Data Receipt
September 22, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

4

http://www.neurosky.com


Section 5 – Using the ThinkGear API

Message Description Data
MSG_STATE_CHANGE e state of the TGDe-

vice has changed
STATE messages stored in the
arg1 ëeld of the message object

MSG_POOR_SIGNAL Signal quality status data e poor signal status from the
headset is stored in the arg1 ëeld
of the message object

MSG_ATTENTION Attention level data e attention level is stored in the
arg1 ëeld of the message object

MSG_MEDITATION Meditation level data e meditation level is stored in
the arg1 ëeld of the message ob-
ject

MSG_BLINK Strength of detected
blink

e blink strength is stored in the
arg1 ëeld of the message object

MSG_RAW_DATA Raw EEG data e raw EEG value is stored as an
int in the arg1 ëeld of the mes-
sage object

MSG_EEG_POWER EEG powers data e EEG powers are passed in as
TGEegPower object in the obj
ëeld of the message object

MSG_RAW_MULTI Multi-channel raw data e multi-channel raw data is
passed in as a TGRawMulti object
in the obj ëeld of the message ob-
ject

MSG_HEART_RATE Heart rate data e heart rate data is passed in as
an int in the arg1 ëeld of themes-
sage object

TGDevice States

State Description
STATE_IDLE Initial state of the TGDevice. Not connected to a headset

STATE_CONNECTING Attempting a connection to the headset
STATE_CONNECTED A valid device hand been found and data is being received

STATE_DISCONNECTED e connection to the device is lost
STATE_NOT_FOUND Could not connect to headset
STATE_NOT_PAIRED A valid headset could not be found

Starting the Data Stream
Connect to a headset by calling the tgDevice's connect method as follows

tgDevice.connect(true);

e tgDevice will search through the paired Bluetooth devices and connect to the ërst knowninkGear
compatible device. Setting the parameter to true or false will enable or disable raw EEG output.

TGDevice States
September 22, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

5

http://www.neurosky.com


Section 6 – References

After successfully connecting to ainkGear device, the tgDevice will send a "BT_STATE_CONNECTED"
message. To start receiving data, call the tgDevice's start method.

tgDevice.start();

Close the connection by calling the close method

tgDevice.close();

Further Considerations
• e application should not expect there to be a inkGear accessory attached to the Android-
based device on startup. As such, it should handle that case accordingly (e.g. by displaying a
static splash screen prompting the user to connect a inkGear accessory).

References

• http://developer.android.com/guide/topics/wireless/bluetooth.html

Further Considerations
September 22, 2011 | © 2009 NeuroSky, Inc. All Rights Reserved.

6

http://developer.android.com/guide/topics/wireless/bluetooth.html
http://www.neurosky.com


Corporate Address
NeuroSky, Inc.
125 S. Market St., Ste. 900
San Jose, CA 95113
United States
(408) 600-0129

Questions/Support: http://support.neurosky.com
or email: support@neurosky.com

Community Forum: http://developer.neurosky.com/forum

Information in this document is subject to change with-
out notice.

Reproduction in anymanner whatsoever without the writ-
ten permission of NeuroSky Inc. is strictly forbidden.
Trademarks used in this text: eSense™,inkGear™,Mind-
Kit™, NeuroBoy™andNeuroSky®are trademarks ofNeuroSky,
Inc.

Disclaimer: e information in this document is provided
in connectionwithNeuroSky products. No license, express
or implied, by estoppels or otherwise, to any intellectual
property rights is granted by this document or in connec-
tionwith the sale ofNeuroSky products. NeuroSky assumes
no liability whatsoever and disclaims any express, implied
or statutory warranty relating to its products including,
but not limited to, the implied warranty of merchantabil-
ity, ëtness for a particular purpose, or non-infringement.
In no even shall NeuroSky be liable for any direct, indi-
rect, consequential, punitive, special or incidental damages
(including, without limitation, damages for loss of prof-
its, business interruption, or loss of information) arising
out of the use of inability to use this document, even
if NeuroSky has been advised of the possibility of such
damages. NeuroSkymakes no representations or warranties
with respect to the accuracy or completeness of the contents
of this document and reserves the right tomake changes to
speciëcations and product descriptions at any time with-
out notice. NeuroSky does not make any commitment
to update the information contained herein. NeuroSky’s
products are not intended, authorized, or warranted for
use as components in applications intended to support or
sustain life.

http://support.neurosky.com
mailto:support@neurosky.com
http://developer.neurosky.com/forum

	Features
	Introduction
	SDK Bugs and Issues
	Supported Hardware
	MindWave Mobile
	Usage
	Broadcast data


	Using the ThinkGear API
	Configuring Your Environment
	Setting Up the TGDevice
	Handling Data Receipt
	TGDevice States
	Starting the Data Stream
	Further Considerations

	References

