
Digital Human Research Center

Advanced Institutes of Convergence
Technology

Tutorial

Arduino Guide using MPU-6050
and nRF24L01

Author:
Daniel titello - Intern

Internship Mentor:
Mathew Schwartz

DHRC Director:
Jaeheung Park

http://dhrc.snu.ac.kr

Suwon, South Korea November 6, 2015

Contents

1 Introduction 2

2 Arduino 2
2.1 History . 2
2.2 Software . 2
2.3 How to create a project . 2

3 Inertial Measurement Unit 4
3.1 Definition . 4
3.2 Accelerometer . 4
3.3 Gyroscope . 5

4 IMU MPU-6050 5
4.1 Schematic . 5
4.2 Code . 6
4.3 Data . 10

4.3.1 Three-Axis MEMS Gyroscope 11
4.3.2 Three-Axis MEMS Accelerometer 11
4.3.3 DMP function . 12

4.4 Register Map . 12
4.4.1 Register 25 - Sample Rate Divider - SMPRTDIV 12
4.4.2 Register 35 - FIFO Enable 12
4.4.3 Register 56 - Interrupt Enable 13
4.4.4 Register 58 - Interrupt Status 15
4.4.5 Registers 59 to 64 - Accelerometer Measurements 15
4.4.6 Registers 65 and 66 - Temperature Measurement 16
4.4.7 Registers 67 to 72 - Gyroscope Measurements 16
4.4.8 Registers 73 to 96 - External Sensor Data 17

5 nRF24L01 18
5.1 Schematic . 18
5.2 Code . 20
5.3 Multiceiver . 23

6 Integration 26

7 References 28

1

1 Introduction

This tutorial will explain how to use the Arduino platform Since the creation of
a simple arduino sketch until the implementation of more complicate examples
using the sensor MPU-6050 and the wireless communication module nRF24L01.
All the details to make the sensor and the wireless communication work will be
explain step by step in this tutorial, including the library code too.

2 Arduino

2.1 History

Arduino is an open-source platform which allows people easily make project
mixing hardware and software. An Arduino board consists of a microcontroller
with complementary components that facilitate programming and incorporation
into other circuits. Standard connectors are responsible to make so easy the
connection between the main board and other auxiliary boards, called Shields.

Arduino is open-source, so everyone has complete access to the schematic
and layout boards or a hundred of online examples.

2.2 Software

Although, the Arduino integrated development environment(IDE) was written
in Java, the Arduino programs or ”Sketchs” are written in C or C++ language.
For better working, it is really important keeping update the computer with the
last support version of the Arduino IDE.

2.3 How to create a project

The first step is defining the correct Arduino board and serial port.

2

Figure 1: The Arduino board is the most popular board.

Figure 2: Correct serial port.

The second step is uploading the sample code ”Blink” which is an example
that will turn on and turn o↵ the LED connect to pin 13 of any Arduino board.
If the code is uploaded without error and the LED is blinking, it means the
board is working properly and you can start your project.

3

Figure 3: Done uploading

3 Inertial Measurement Unit

3.1 Definition

An inertial measurement unit (IMU) is an electronic device that measures and
reports a craft’s velocity, orientation, and gravitational forces, using a combi-
nation of accelerometers and gyroscopes, sometimes also magnetometers.

3.2 Accelerometer

An accelerometer is an electromechanical device used to measure acceleration
forces. Such forces may be static, like the continuous force of gravity or, as is
the case with many mobile devices, dynamic to sense movement or vibrations.

Accelerometer allows us to know if objects are moving and since the acceler-
ation of an object is known, we also can determine speed and orientation. For
example, 1g is equal to 9.81 m/s2.

4

3.3 Gyroscope

A gyroscope is a device that uses Earth’s gravity to help determine orientation
and maintains this level of e↵ectiveness by being able to measure the rate of ro-
tation around a particular axis. Gyroscope are strong used in altitude indicator
on typical aircrafts.

4 IMU MPU-6050

MPU-6050 is a sensor that contains MEMS accelerometer and a MEMS gyro-
scope in one chip. Both accelerometer and gyrosocope contains 3 axis that can
captures x,y and z with 16-bits analog to digital conversion hardware for each
channel. Mpu-6050 uses I2C for communication which is a multi-master,multi-
slave,single-ended,serial computer bus with low speed but very useful because
uses only two wires: SCL(clock) and SDA(data) lines.

If we search on Arduino’s website about this sensor, there are some ex-
amples and we are going to use the library i2cdevlib which comes with two
examples: one getting raw values and another one using a Digital Motion Pro-
cessor(DMP).I am using the example that uses DMP because of the complexity
of the project.

The library ”Wire.h” has the I2C commands and configuration. For exam-
ple, the library says that the pins SCL and SDA have to be connect to the pins
A5 and A4 respectively when the user uses Arduino Uno and Arduino ethernet.
The other includes are part of the library created that was downloaded.

4.1 Schematic

To make the sensor MPU-6050 work, it is necessary:

• Arduino IDE;

• Arduino board;

• MPU-6050;

• Breadboard;

• Two pull-up resistor of 10k ohms;

• Wires;

Although the breadboard and the wires are optional items, the two pull-up
resistor are essential. The diagram below shows how to connect the sensor to a
Arduino Uno. It is also important connect all the sensor pins with the correct
arduino pins. The pull-up resistor will always keep a small amount of current
flowing between VCC and the pin, in other words, it will keep a valid logic level
if it is not flowing current in the pin.

5

• Sensor VDD - Arduino 3.3v or 5v

• Sensor GND - Arduino GND

• Sensor INT - Arduino digital pin 2

• Sensor SCL - Arduino SCL dedicated pin = A5

• Sensor SDA - Arduino SDA dedicated pin = A4

Figure 4: Source: RFduino, Image by Unknown

4.2 Code

The first thing to do is declare the libraries we are going to use. While the
libraries i2c and Wire are responsible for the i2c communication, the library
i2cdevlib is responsible for setting up all the registers and necessary configura-
tion to make the sensor work.

1 #include <I2Cdev.h>
2 #include <MPU6050_6Axis_MotionApps20.h>
3 #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
4 #include <Wire.h>
5 #endif

The line below is configuring the I2C address. The MPU-6050 has two I2C
addresses that makes possible to use two sensor at the same arduino board
without an I2C multiplexer. The default address is 0x68 which means that the
pin AD0 has to be connect to the ground.

1 MPU6050 mpu;

6

Those control variables are very important to make the MPU works and
each one has a di↵erent function.

1 bool dmpReady = false;
2 uint8_t mpuIntStatus;
3 uint8_t devStatus;
4 uint16_t packetSize;
5 uint16_t fifoCount;
6 uint8_t fifoBuffer[64];

The meaning of each variable is:

• dmpReady is true if DMP initialization was successful.

• mpuIntStatus holds the actual interrupt status byte from MPU.

• devStatus returns the status after each device operation (0 = success, !0
= error).

• fifoCount is the DMP packet size(default is 42 bytes).

• fifoBu↵er[64] is the FIFO storage bu↵er.

In the function setup() is important to initialize the library wire and set up
the i2c speed. Every device has a maximum speed and this information is found
in the datasheet. In our case, the maximum speed is 400KHz. Make sure the
processor used is 16MHz, otherwise the speed has to be decreased to 200KHz.

1 #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE
2 Wire.begin();
3 TWBR = 24;
4 #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE
5 Fastwire::setup(400, true);
6 #endif

After initialize the i2c, it is time to start the MPU and test if the device is
connect to the Arduino. The commands below are responsible for that:

1 mpu.initialize();
2 Serial.println(mpu.testConnection());

Note: The library used has a file called ”MPU6050.cpp” which initializes
the sensor. The following code is located in this file.

1 void MPU6050::initialize()
2 {

7

3 setClockSource(MPU6050_CLOCK_PLL_XGYRO);
4 setFullScaleGyroRange(MPU6050_GYRO_FS_250);
5 setFullScaleAccelRange(MPU6050_ACCEL_FS_2);
6 setSleepEnabled(false);
7 }
8 bool MPU6050::testConnection()
9 {

10 return getDeviceID() == 0x34;
11 }

The code above is very simple and it is just setting the clock, gyroscope and
accelerometer scales and disabling the sleep mode.

If the DMP initializes correctly, the devStatus will receive a status zero
and the variable dmpReady will be set in one and this means that the DMP
was initialized correctly and the program is ready the send data to the FIFO.
Otherwise, it will be printed an error message and the variable dmpReady will
continue ”false” which makes impossible the executing of the code.

1 if (devStatus == 0)
2 {
3 mpu.setDMPEnabled(true);
4 attachInterrupt(0, dmpDataReady, RISING);
5 mpuIntStatus = mpu.getIntStatus();
6 dmpReady = true;
7 packetSize = mpu.dmpGetFIFOPacketSize();
8 }
9 else {

10 Serial.print(devStatus);
11 Serial.println("error");
12 }

Now, the code is being executed in the function loop(). The first line is a
conditional that tests if the DMP was initialize correctly. The examination is
made through the variable dmpReady.

1 if (!dmpReady) return;

Until this part, the code was making sure that the device is connected to
an Arduino and initializing the DMP. From now, the program will put the data
into the FIFO and the FIFO will put the data out through the serial monitor.

The sample rate is specified by the register 25 and it is the speed that the
sensor will send data to the FIFO. The sample is generated by dividing the
gyroscope output rate by SMPLRTDIV: Sample Rate = Gyroscope Output
Rate / (1 + SMPLRTDIV) where Gyroscope Output Rate = 8kHz when the
DLPF is disabled (DLPFCFG = 0 or 7), and 1kHz when the DLPF is enabled.

8

SMPLRTDIV is a 8-bit unsigned value.
As expected, the FIFO has a bu↵er size and it is impossible knowing how

to deal with it. The line below is getting the the number of bytes stored in
the FIFO bu↵er. This number is in turn the number of bytes that can be read
from the FIFO bu↵er and it is directly proportional to the number of samples
available given the set of sensor data bound to be stored in the FIFO. The
program will return the FIFO bu↵er size.

1 fifoCount = mpu.getFIFOCount()

The following code shows that the command ”mpu.getFIFOCount()” comes
from the file ”MPU6050.cpp” that comes from the library.

1 uint16_t MPU6050::getFIFOCount()
2 {
3 I2Cdev::readBytes(devAddr, MPU6050_RA_FIFO_COUNTH, 2, buffer);
4 return (((uint16_t)buffer[0]) << 8) | buffer[1];
5 }

Since the moment the program knows the size of the FIFO, it is possible
making a conditional that will delete the oldest data in the FIFO if an overflow
happen. If not, the fifobu↵er will be read and the data will be available.

The FIFO R-W register is the register is used to read and write data from
the FIFO bu↵er. Data is written to the FIFO in order of register number (from
lowest to highest). If all the FIFO enable flags (see below) are enabled and all
External Sensor Data registers (Registers 73 to 96) are associated with a Slave
device, the contents of registers 59 through 96 will be written in order at the
Sample Rate.

The contents of the sensor data registers (Registers 59 to 96) are written
into the FIFO bu↵er when their corresponding FIFO enable flags are set to
1 in FIFO-EN (Register 35). An additional flag for the sensor data registers
associated with I2C Slave 3 can be found in I2C-MST-CTRL (Register 36).

If the FIFO bu↵er has overflowed, the status bit FIFO-OFLOW-INT is au-
tomatically set to 1. This bit is located in INT-STATUS (Register 58). When
the FIFO bu↵er has overflowed, the oldest data will be lost and new data will
be written to the FIFO.

If the FIFO bu↵er is empty, reading this register will return the last byte
that was previously read from the FIFO until new data is available. The user
should check FIFO-COUNT to ensure that the FIFO bu↵er is not read when
empty.

1 if ((mpuIntStatus & 0x10) || fifoCount == 1024)
2 {
3 mpu.resetFIFO();
4 }

9

5 else if (mpuIntStatus & 0x02)
6 {
7 while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount();
8 mpu.getFIFOBytes(fifoBuffer, packetSize);
9 fifoCount -= packetSize;

10

11 #ifdef OUTPUT_READABLE_YAWPITCHROLL
12 mpu.dmpGetQuaternion(&q, fifoBuffer);
13 mpu.dmpGetGravity(&gravity, &q);
14 mpu.dmpGetYawPitchRoll(ypr, &q, &gravity);
15 Serial.print("ypr\t");
16 Serial.print(ypr[0] * 180/M_PI);
17 Serial.print("\t");
18 Serial.print(ypr[1] * 180/M_PI);
19 Serial.print("\t");
20 Serial.println(ypr[2] * 180/M_PI);
21 #endif
22 }

Note: To prevent FIFO overflow, do not execute the command delay(). It
is also important to make sure that the sample rate has more or less the same
speed than the FIFO output.

4.3 Data

More important than get the data from the sensor, it is get a reliable data. The
code below is calibrating the sensor with the right o↵set of each axis: x,y and
z. Every sensor has di↵erent o↵sets, so it is essential to find those values using
another example that can be MPU6050.raw.ino that comes in the library file
too.

1 mpu.setXGyroOffset(220);
2 mpu.setYGyroOffset(76);
3 mpu.setZGyroOffset(-85);
4 mpu.setZAccelOffset(1788);

The scale factor of accelerometers is calibrated at the factory and is nomi-
nally independent of supply voltage. Before we start using the MEMS we should
calibrate using the code above because the raw values change a lot. After we
get the o↵sets from the calibration, we have to write them in the code above.
For reliable o↵sets, the device has to be placed on a flat surface.

1 // MPU-6050 Short Example Sketch
2 // By Arduino User JohnChi
3 // August 17, 2014
4 // Public Domain

10

5 #include<Wire.h>
6 const int MPU=0x68;
7 int16_t AcX,AcY,AcZ,Tmp,GyX,GyY,GyZ;
8 void setup()
9 {

10 Wire.begin();
11 Wire.beginTransmission(MPU);
12 Wire.write(0x6B);
13 Wire.write(0);
14 Wire.endTransmission(true);
15 Serial.begin(9600);
16 }
17 void loop(){
18 Wire.beginTransmission(MPU);
19 Wire.write(0x3B);
20 Wire.endTransmission(false);
21 Wire.requestFrom(MPU,14,true);
22 AcX=Wire.read()<<8|Wire.read();
23 AcY=Wire.read()<<8|Wire.read();
24 AcZ=Wire.read()<<8|Wire.read();
25 Tmp=Wire.read()<<8|Wire.read();
26 GyX=Wire.read()<<8|Wire.read();
27 GyY=Wire.read()<<8|Wire.read();
28 GyZ=Wire.read()<<8|Wire.read();
29 Serial.print("AcX = "); Serial.print(AcX);
30 Serial.print(" | AcY = "); Serial.print(AcY);
31 Serial.print(" | AcZ = "); Serial.print(AcZ);
32 Serial.print(" | Tmp = "); Serial.print(Tmp/340.00+36.53);
33 Serial.print(" | GyX = "); Serial.print(GyX);
34 Serial.print(" | GyY = "); Serial.print(GyY);
35 Serial.print(" | GyZ = "); Serial.println(GyZ);
36 delay(333);
37 }

Source: Arduino website by JohnChi.

4.3.1 Three-Axis MEMS Gyroscope

The full-scale range of the gyro sensors can be programmed to 250, 500, 1000,
or 2000 degrees per second (dps) and it is 16-bit Analog-to-Digital Converters
(ADCs) to sample each axis.

4.3.2 Three-Axis MEMS Accelerometer

The full scale range of the digital output can be adapted to 2g, 4g, 8g, or 16g.
When the device is placed on a flat surface, it will measure 0g on the X- and
Y-axes and +1g on the Z-axis.

11

4.3.3 DMP function

According to the website Greek Mom projects, ”the MPU6050 IMU contains a
DMP (Digital Motion Processor) which combines the accelerometer and gyro-
scope data together to minimize the e↵ects of errors. The result is computed
by the DMP in terms of quaternions and can convert the results to Euler angles
and perform other computations with the data as well”. The DMP is better
than the complementary filter because is able to calculate Pitch, roll and yaw
which are known as X,Y and Z axis (Euler angles). These calculations were
limited by certain properties of both the accelerometer and gyroscope and one
way to avoid the problems is to use an alternate method of representing rotation
called quaternions. Quaternions describe rotation in three dimensions by using
four scalar values. Three of these scalars define an axis, and the fourth specifies
a rotation around that axis.

4.4 Register Map

Although the code above is explained in details, it is good to know a little bit
more how the MPU6050 works when the topic is registers. This tutorial has a
list with the main registers and the description of each one.

4.4.1 Register 25 - Sample Rate Divider - SMPRTDIV

This register specifies the divider from the gyroscope output rate used to gen-
erate the Sample Rate for the MPU-60X0. The sensor register output, FIFO
output, DMP sampling and Motion detection are all based on the Sample Rate.

The Sample Rate is generated by dividing the gyroscope output rate by
SMPLRTDIV: Sample Rate = Gyroscope Output Rate / (1 + SMPLRTDIV)
where Gyroscope Output Rate = 8kHz when the DLPF is disabled (DLPFCFG
= 0 or 7), and 1kHz when the DLPF is enabled.

Parameter:

• SMPLRTDIV is a 8-bit unsigned value.

Figure 5: Sample Rate - Source: Datasheet

4.4.2 Register 35 - FIFO Enable

This register determines which sensor measurements are loaded into the FIFO
bu↵er. Data stored inside the sensor data registers (Registers 59 to 96) will be

12

loaded into the FIFO bu↵er if a sensor?s respective FIFO-EN bit is set to 1 in
this register.

When a sensor FIFO-EN bit is enabled in this register, data from the sensor
data registers will be loaded into the FIFO bu↵er.

Parameters:

• TEMP-FIFO-EN - When set to 1, this bit enables TEMP-OUT-H and
TEMP-OUT-L (Registers 65 and 66) to be written into the FIFO bu↵er.

• XG-FIFO-EN - When set to 1, this bit enables GYRO-XOUT-H and
GYRO-XOUT-L (Registers 67 and 68) to be written into the FIFO bu↵er.

• YG-FIFO-EN - When set to 1, this bit enables GYRO-YOUT-H and
GYRO-YOUT-L (Registers 69 and 70) to be written into the FIFO bu↵er.

• ZG-FIFO-EN - When set to 1, this bit enables GYRO-ZOUT-H and
GYRO-ZOUT-L (Registers 71 and 72) to be written into the FIFO bu↵er.

• ACCEL-FIFO-EN - When set to 1, this bit enables ACCEL-XOUT-H,
ACCEL-XOUT-L, ACCEL-YOUT-H, ACCEL-YOUT-L, ACCEL-ZOUT-
H, and ACCEL-ZOUT-L (Registers 59 to 64) to be written into the FIFO
bu↵er.

• SLV2-FIFO-EN-When set to 1, this bit enables EXT-SENS-DATAregisters
(Registers 73 to96) associated with Slave 2 to be written into the FIFO
bu↵er.

• SLV1- FIFO-EN -When set to 1, this bit enables EXT-SENS-DATAregisters
(Registers 73 to 96) associated with Slave 1 to be written into the FIFO
bu↵er.

• SLV0-FIFO-EN- When set to 1, this bit enables EXT-SENS-DATA reg-
isters (Registers 73 to 96) associated with Slave 0 to be written into the
FIFO bu↵er.

Figure 6: FIFO enable - Source: Datasheet

4.4.3 Register 56 - Interrupt Enable

This register enables interrupt generation by interrupt sources.
Parameters:

13

• MOT-EN - When set to 1, this bit enables Motion detection to generate
an interrupt.

• FIFO-OFLOW-EN - When set to 1, this bit enables a FIFO bu↵er overflow
to generate an interrupt

• I2C-MST-INT-EN - When set to 1, this bit enables any of the I2C Master
interrupt sources to generate an interrupt.

• DATA-RDY-EN - When set to 1, this bit enables the Data Ready inter-
rupt, which occurs each time a write operation to all of the sensor registers
has been completed.

14

Figure 7: Interrupt enable - Source: Datasheet

4.4.4 Register 58 - Interrupt Status

This register shows the interrupt status of each interrupt generation source.
Each bit will clear after the register is read.

Parameters:

• MOT-INT - This bit automatically sets to 1 when a Motion Detection
interrupt has been generated. The bit clears to 0 after the register has
been read.

• FIFO-OFLOW-INT - This bit automatically sets to 1 when a FIFO bu↵er
overflow interrupt has been generated. The bit clears to 0 after the register
has been read.

• I2C-MST-INT - This bit automatically sets to 1 when an I2 C Master
interrupt has been generated. For a list of I2C Master interrupts, please
refer to Register 54. The bit clears to 0 after the register has been read.

• DATA-RDY-INT - This bit automatically sets to 1 when a Data Ready
interrupt is generated. The bit clears to 0 after the register has been read.

Figure 8: Interrupt Status - Source: Datasheet

4.4.5 Registers 59 to 64 - Accelerometer Measurements

These registers store the most recent accelerometer measurements.
Parameters:

• ACCEL-XOUT 16-bit 2?s complement value. Stores the most recent X
axis accelerometer measurement.

• ACCEL-YOUT 16-bit 2?s complement value. Stores the most recent Y
axis accelerometer measurement.

• ACCEL-ZOUT 16-bit 2?s complement value. Stores the most recent Z
axis accelerometer measurement.

15

Figure 9: Accelerometer Measurements - Source: Datasheet

4.4.6 Registers 65 and 66 - Temperature Measurement

These registers store the most recent temperature sensor measurement. The
temperature in degrees C for a given register value may be computed as: Tem-
perature in degrees C = (TEMP-OUT Register Value as a signed quantity)/340
+ 36.53.

Parameters:

• TEMP-OUT 16-bit signed value. Stores the most recent temperature
sensor measurement.

Figure 10: Temperature Measurement - Source: Datasheet

4.4.7 Registers 67 to 72 - Gyroscope Measurements

These registers store the most recent gyroscope measurements.
Parameters:

• GYRO-XOUT 16-bit 2?s complement value. Stores the most recent X
axis gyroscope measurement.

• GYRO-YOUT 16-bit 2?s complement value. Stores the most recent Y
axis gyroscope measurement.

• GYRO-ZOUT 16-bit 2?s complement value. Stores the most recent Z axis
gyroscope measurement.

16

Figure 11: Gyroscope Measurement - Source: Datasheet

4.4.8 Registers 73 to 96 - External Sensor Data

These registers store data read from external sensors by the Slave 0, 1, 2, and
3 on the auxiliary I2C interface.

External sensor data is written to these registers at the Sample Rate as
defined in Register 25. External sensor data registers, along with the gyroscope
measurement registers, accelerometer measurement registers, and temperature
measurement registers, are composed of two sets of registers: an internal register
set and a user-facing read register set.

The data within the external sensors? internal register set is always updated
at the Sample Rate (or the reduced access rate) whenever the serial interface
is idle. This guarantees that a burst read of sensor registers will read measure-
ments from the same sampling instant. Note that if burst reads are not used,
the user is responsible for ensuring a set of single byte reads correspond to a
single sampling instant by checking the Data Ready interrupt.

Figure 12: External Sensor Data - Source: Datasheet

17

5 nRF24L01

The nRF24L01 is a Radio/Wireless Transceiver module which is able to commu-
nicate two or more Arduinos over a distance and it is constantly used for remote
sensor, Robot control and monitoring from 50 feet to 2000 feet distances, but
this distance can change according to the environment because of walls and ma-
terials. There are modules that it is possible to buy and those modules such as,
Transmitters power amplifiers and Receivers preamplifiers, permit transmitting
in longer distances.

The nRF24L01 supports the high-speed Serial Peripheral Interface(SPI) and
it is still low power consumption. Sometimes the low current necessary can cause
some power problems, so it is recommended add a 0.1uF or 10uF capacitor
between the GND and 3.3V pin to guarantee current to module. The capacitor
recommended will serve as a source of energy, in other words, as a battery.

The nRF24L01 operates at 250KHz, 1Mhz and 2Mhz and it is suggested use
the lower speed to make sure if the data sent and received are reliable. It is also
important to consider those detailed specially because of the di↵erent suppliers.

Later on, we are going to talk about Multiceivers which allows 6 Arduinos
to talk to a Primary Arduino in an organized manner.

Figure 13: nRF24L01

5.1 Schematic

To make the module nRF24L01 work, it is necessary:

• Arduino IDE;

• Arduino board;

• nRF24L01;

• One 0.1uF or 10uF capacitor;

• Wires;

18

Figure 14: Bottom view. Source: Arduino Info

Figure 15: Pinout. Source: Arduino Info

The images below will show how to set the modules nRF24L01 up.
The picture above shows that is necessary 8 pins to connect the module to

a Arduino. The place of connection of those pins is di↵erent from one Arduino
to another. The pins ”CE” and ”CSN” can change by programming.

In our example, we are using the following configuration.

• Module VDD - Arduino 3.3v

• Module GND - Arduino GND

• Module IRQ - not used

19

• Module CE - Arduino CE dedicated pin = 9

• Module CSN - Arduino CSN dedicated pin = 10

• Module SCK - Arduino SCK dedicated pin = 13

• Module MOSI - Arduino MOSI dedicated pin = 11

• Module MISO - Arduino MISO dedicated pin = 12

Note: The pinout of the transmitter module and receiver module are the
same.

5.2 Code

The first thing to take a look in this part is about the library that we are going
to use. The Arduino website talks about two libraries: RF24 and Mirf. In this
code we will use the first library which has the same configuration above.

Remember to declare the libraries used at the first part of the code right in
the top. The following libraries are necessary to communicate with the nRF2401
and with the SPI.

1 #include <SPI.h>
2 #include <nRF24L01.h>
3 #include <RF24.h>

After the declaration of the libraries, we have the opportunity of modify the
pin numbers of CE and CSN which will be used later to initialize the module or
radio. According to the datasheet, the pin CE is used to active or standby the
mode. The pin CSN is used to tell the nRF24 whether the SPI communication
is a command or message to send out as claimed by the same datasheet.

1 #define CE_PIN 9
2 #define CSN_PIN 10

Until here, this part is the same for both modes: the transmitter and receiver.
Now, we will explain how to write a transmitter code. This Wireless module
send and receive data through pipes, in other words, a pipe is an transceiver
address. The lines below has to be programmed in both modules.

1 const uint64_t pipe = 0xE8E8F0F0E1LL;
2 RF24 radio(CE_PIN, CSN_PIN);

The first di↵erence starts in the function setup() which will start the commu-
nication with the command ”radio.begin()” and open the only pipe for writing
because we are programming the transmitter part.

20

1 radio.begin();
2 radio.openWritingPipe(pipe);

Then, the next function is the loop() which will be very simple too. We just
have to write the data we want to send to the receiver. In this example, we are
sending an array of three elements.

1 int test[3];
2 test[0] = 10;
3 test[1] = 20;
4 test[2] = 30;
5 radio.write(test, sizeof(test));

Now, we will se how to program the function setup() of the receiver mode.

1 radio.openReadingPipe(1,pipe);
2 radio.startListening();;

The nRF24L01 supports six pipes for reading, so it is important to define
each one we will use. In this example, the pipe 1 is the first. Before reading, we
must use the function startListening();

In the function loop(), we will verify if there is a connection, then the pro-
gram will be ready to receive the 3 elements we are waiting.

1 int text[3];
2 if (radio.available())
3 {
4 bool done = false;
5 while (!done)
6 {
7 done = radio.read(text, sizeof(text));
8 Serial.print("Number: ");
9 Serial.print(text[0]);

10 Serial.print("Number: ");
11 Serial.print(text[1]);
12 Serial.print("Number: ");
13 Serial.print(text[2]);
14 }
15 }
16 else
17 {
18 Serial.println("No radio available");
19 }
20 }

21

The entire Transmitter code is

1 #include <SPI.h>
2 #include <nRF24L01.h>
3 #include <RF24.h>
4

5 #define CE_PIN 9
6 #define CSN_PIN 10
7

8 const uint64_t pipe = 0xE8E8F0F0E1LL; // Define the transmit pipe
9

10 RF24 radio(CE_PIN, CSN_PIN); // Create a Radio
11 int test[3];
12 void setup()
13 {
14 radio.begin();
15 radio.openWritingPipe(pipe);
16 }
17

18 void loop()
19 {
20 test[0] = 10;
21 test[1] = 20;
22 test[2] = 30;
23 radio.write(test, sizeof(test));
24 }

The entire Receiver code is

1 #include <SPI.h>
2 #include <nRF24L01.h>
3 #include <RF24.h>
4

5 #define CE_PIN 9
6 #define CSN_PIN 10
7

8 const uint64_t pipe = 0xE8E8F0F0E1LL;
9

10 RF24 radio(CE_PIN, CSN_PIN);
11 int text[3];
12 void setup()
13 {
14 radio.openReadingPipe(1,pipe);
15 radio.startListening();;
16 }
17

18 void loop()

22

19 {
20 if (radio.available())
21 {
22 bool done = false;
23 while (!done)
24 {
25 done = radio.read(text, sizeof(text));
26 Serial.print("Number: ");
27 Serial.print(text[0]);
28 Serial.print("Number: ");
29 Serial.print(text[1]);
30 Serial.print("Number: ");
31 Serial.print(text[2]);
32 }
33 }
34 else
35 {
36 Serial.println("No radio available");
37 }
38 }

5.3 Multiceiver

MultiCeiver is a feature used in RX mode that contains a set of six parallel
data pipes with unique address. A data pipe is a logical channel in the phys-
ical RF channel. Each data pipe has its own physical address decoding in the
NRF24L01+.

Figure 16: MultiCeiver schematic. Source: Datasheet

Both modes have di↵erents codes from the first and second example one
showed. ***************************Arduino Code for Receiver*******************************

23

1 include <SPI.h>
2 include <nRF24L01.h>
3 include <RF24.h>
4

5 const int pinCE = 9;
6 const int pinCSN = 10;
7 RF24 radio(pinCE, pinCSN);
8 const uint64_t rAddress[] = {0xB00B1E50D2LL, 0xB00B1E50C3LL};
9 int number = 0;

10 void setup()
11 {
12 Serial.begin(57600);
13 radio.begin();
14 radio.openReadingPipe(1,rAddress[0]);
15 radio.openReadingPipe(2,rAddress[1]);
16 radio.startListening();
17 }
18

19 void loop()
20 {
21 byte pipe = 0;
22

23 while(radio.available(&pipe))
24 {
25 radio.read(&number, sizeof(number));
26 Serial.print("Transmitter number ");
27 Serial.println(pipe);
28 Serial.print("Number: ");
29 Serial.println(number);
30 Serial.println();
31 }
32 }

Source: ForceTronic by Neil ForceTronic.

***************************Arduino Code for Transmitter 1****************************

1 #include <SPI.h>
2 #include <nRF24L01.h>
3 #include <RF24.h>
4

5 const int pinCE = 9;
6 const int pinCSN = 10;
7

8 bool done = false;
9 RF24 radio(pinCE, pinCSN);

10 const uint64_t wAddress = 0xB00B1E50D2LL;
11 int number = 10;
12 void setup()

24

13 {
14 Serial.begin(57600);
15 radio.begin();
16 radio.openWritingPipe(wAddress);
17 radio.stopListening();
18 }
19

20

21 void loop()
22 {
23 if(!done)
24 {
25 if (!radio.write(&number, sizeof(number)))
26 {
27 Serial.println("Sending failed");
28 }
29 else
30 {
31 Serial.print("Success sending: ");
32 Serial.println(number);
33 }
34 }
35 }

Source: ForceTronic by Neil ForceTronic.

***************************Arduino Code for Transmitter 2****************************

1 #include <SPI.h>
2 #include <nRF24L01.h>
3 #include <RF24.h>
4

5 const int pinCE = 9;
6 const int pinCSN = 10;
7

8 bool done = false;
9 RF24 radio(pinCE, pinCSN);

10 const uint64_t wAddress = 0xB00B1E50C3LL;
11 int number = 20;
12 void setup()
13 {
14 Serial.begin(57600);
15 radio.begin();
16 radio.openWritingPipe(wAddress);
17 radio.stopListening();
18 }
19

20

21 void loop()

25

22 {
23 if(!radio.write(&number, sizeof(number)))
24 {
25 Serial.println("Sending failed");
26 }
27 else
28 {
29 Serial.print("Success sending ");
30 Serial.println(number);
31 }
32

33 }

Source: ForceTronic by Neil ForceTronic.

It is possible to use more four transmitter together. The only thing to care is
the addresses and the data that the new transmitter would send. All addresses
must be di↵erent and the RX mode has to receive the same data that the
TX mode are sending. If we want more than two transmitter we can use the
same code, but instead of the same address we have to modify for the following
addresses below.

1 \item const uint64_t wAddress = 0xB00B1E50B4LL;
2 \item const uint64_t wAddress = 0xB00B1E50A5LL;
3 \item const uint64_t wAddress = 0xB00B1E5096LL;
4 \item const uint64_t wAddress = 0xB00B1E5087LL;

The data sent should change according to the necessity.

6 Integration

The aim of this tutorial is learn about two devices: MPU-6050 and nRF24L01.
After understanding that, we chose to integrate both, getting the data from
the sensor and sending through the Wireless module. We had some problems
specially because the sensor gets information using the DMP that only works
without delay, but the library used has a small delay in one of the functions.
After a lot of tests, we know that the devices are working well separately, through
they don’t work reliably together.

The ready - functions from the RF24 library were analysed too since we
thought the problem could be there. Some of the functions inside the library
have delay. Those delays are responsible for sending and receiving data, which
can overflow the MPU - 6050 FIFO because the data output is becoming slower
than the data input.

One of the possible solutions was decrease the non - crucial delays to see the
response. Sadly, after some minutes the program crashed again. We also tried
to run two loops that we could initialize the MPU-6050 and nRF24L01 after

26

the counter achieves some number. The answer was good, however, the data
got was not reliable because every time the sensor was initiazed, the sensor was
calibrating for a few seconds.

27

7 References

[1] Arduino O�cial.

[2] MPU-6050 Datasheet.

[3] Gyroscopes and Accelerometers.

[4] DMP data.

[5] Nrf24L01-2.4GHz-Arduino O�cial.

[6] Nrf24L01-2.4GHz Datasheet.

[7] Nrf24L01-2.4GHz-HowToWork.

[8] GithubRF24.

[9] Multiceiver.

28

