

Honeywell Sensing and Control

SS443A

SS400 Series Unipolar Hall-Effect Digital Position Sensor; radial lead IC package

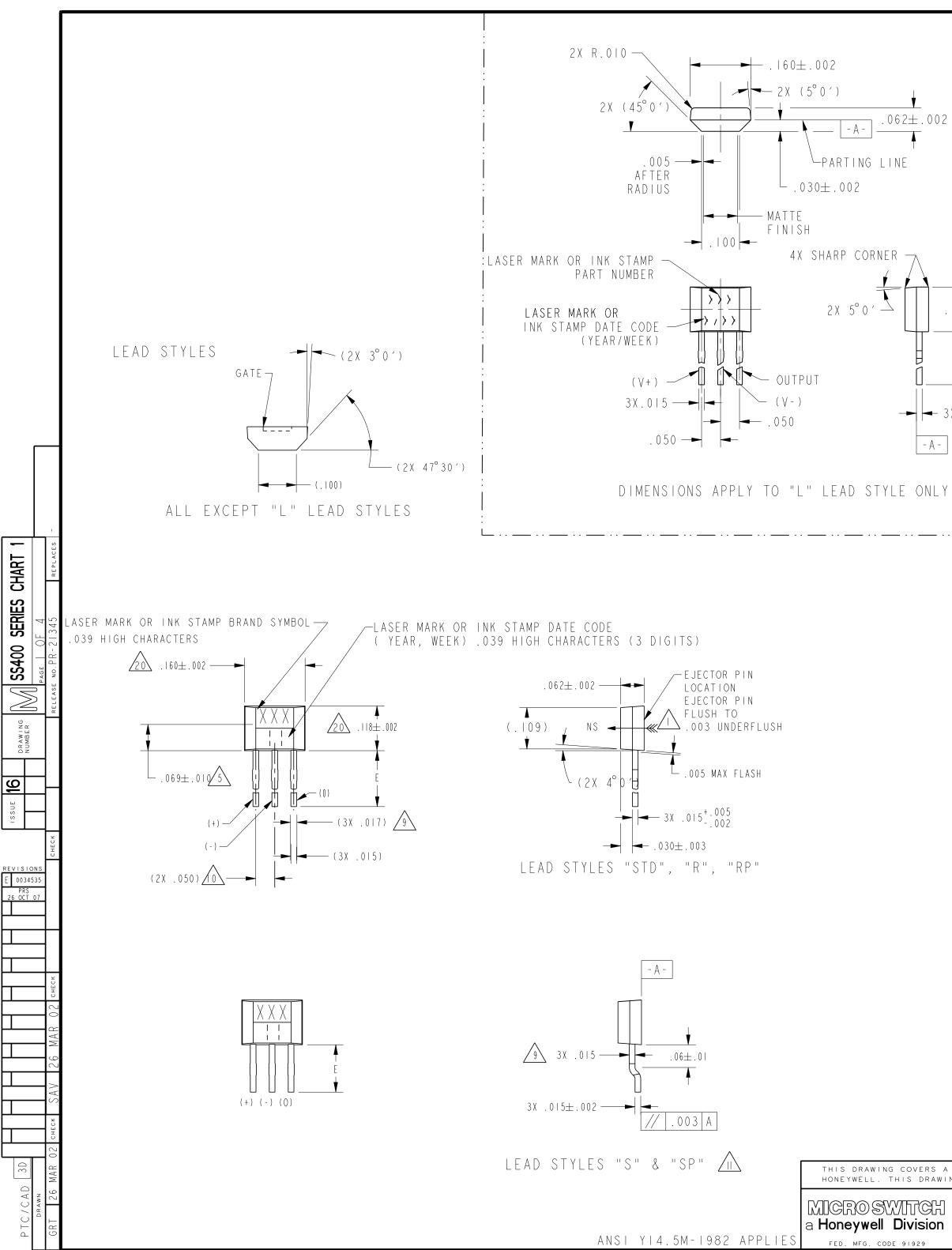
Actual product appearance may vary.

Features

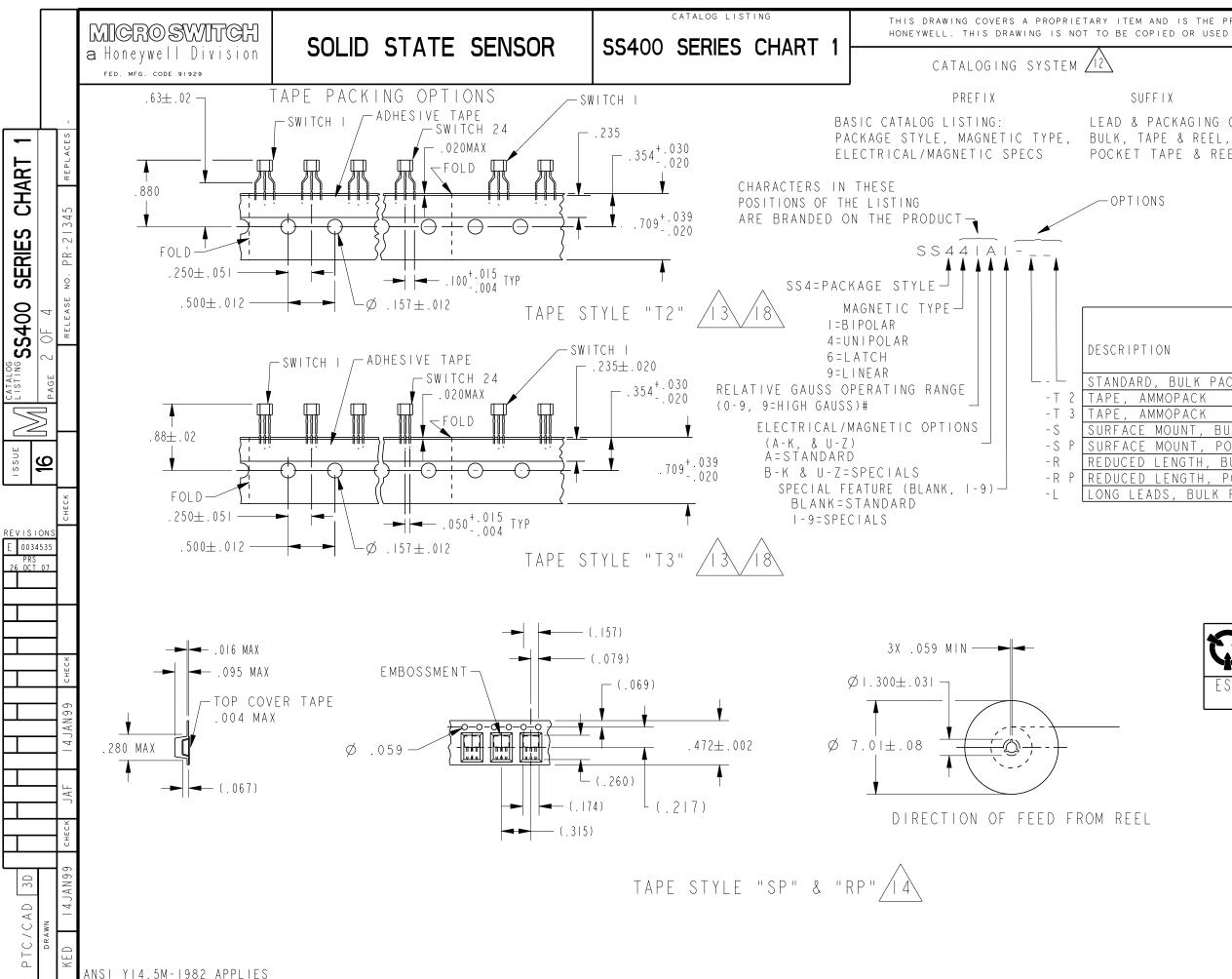
- Digital current sinking output
- Quad-Hall design virtually eliminates mechanical stress effects
- Temperature compensated
 magnetics
- Operate/release points can be customized
- High output current capability
- Operate/release points symmetrical
- around zero gauss (bipolar/latch)
- Package material: Plaskon 3300H
- Surface mount version available:
- SS400-S (with cut and formed leads)

Description

SS400 Series position sensors have a thermally balanced integrated circuit over full temperature range. The negative compensation slope is optimized to match the negative temperature coefficient of lower cost magnets. Bipolar, latching and unipolar magnetics are available.


Band gap regulation provides extremely stable operation over 3.8 Vdc to 30 Vdc supply voltage range.

NOTE: Interruption of power to a latching device may cause the output to change state when power is restored. If a magnetic field of sufficient strength is present, the sensor output will be in the condition dictated by the magnetic field.


Potential Applications

- Speed and RPM sensor
- Brushless DC motor commutation
- Motor and fan control
- Magnetic encoding
- Tachometer, counter pickup
- Disc speed, tape rotation sensing
- Flow-rate sensing

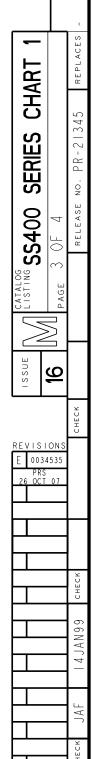
Product Specifications						
Product Type	Hall-Effect Digital Position Sensor IC					
Package Quantity/Type	Available in 1,000/Bag					
Package Style	Radial Lead IC					
Supply Voltage	3.8 Vdc to 30.0 Vdc					
Output Type	Sink					
Termination Type	PC Board					
Magnetic Actuation Type	Unipolar					
Operating Temperature Range	-40 °C to 150 °C [-40 °F to 302 °F]					
Storage Temperature	-65 °C to 160 °C [-85 °F to 320 °F]					
Output Voltage	0.4 Vdc max.					
Switching Time Rise (10 % to 90 %)	1.5 µs max.					
Switching Time Fall (90 % to 10 %)	1.5 μs max.					
Availability	Global					
Supply Current (max. @ 25 °C)	10 mA					
Output Current (max.)	20 mA					
Operate Point @ 25 °C	18.0 mT [180 G] max.					
Release Point @ 25 °C	7.5 mT [75 G] min.					
Leakage Current max.	10 µA					
Differential	0.5 mT [5 G] min.					
Series Name	SS400					

			SS400 SERIES CHART 1
8±.002 ──¥			
(.735)			
X.015	THE DIRECTION CONVENTION THA MAGNET IS FROM THE MAGNETIC F SWITCH TO CHAN TABULATED. TO THE SWITCH MUS' ABSOLUTE MAXIM WILL MOMENTARI ELECTRICAL AND IF THE RATED M ABSOLUTE MAXIM WILL MOMENTARI ELECTRICAL AND IF THE RATED M THE DEVICE NEC TEST CONDITIONS APPROXIMATE HA 6 - LEADS MUST BE SHEERING OPERA WITHIN THE PLAS' 7 - PCB WAVE SOLDE 250°C PEAK FOR SOLDERING TIME Vcc=12V, R[=1.61 BURRS ARE ALLC Ø.023 HOLE. LE THICKNES DIMENSION REFE THE PLASTIC PA TYPICAL DIMENSIS SOME COMBINATION TAPE AND AMMON POCKET TAPE AN Vcc=3.8V, Isin Vcc=3.8V, Isin Vcc=3.8V, Isin Vcc=3.8V, Isin Vcc=3.8V, Isin Vcc=3.8V, Isin Vcc=3.8V, Isin Nout=30V, Vcc= AMMOPACK STYL SKIP I SPACE LEAD STRAIGHT APPLICATIONS USE A TAPE PA MOLDED PART D .005 MAX THESE HALL EFFE OFF STATE IF PC ZONE (APPLIED M THAT THE APPLIC	A THE NORTH TO THE SOUTH POL IELD STRENGTH (GAUSS) REQUIR GE STATE (OPERATE AND RELEA TEST THE SWITCH AGAINST THE S T BE PLACED IN A UNIFORM MAGE UM RATINGS ARE THE EXTREME L LY WITHSTAND WITHOUT DAMAGE MAGNETIC CHARACTERIISTICS / /OLTAGE AND/OR CURRENTS ARE ESSARILY OPERATE AT ABSOLUT G: Vcc=I2V, R2=I.6K OHMS, C2: NLL ELEMENT LOCATION ADEQUATELY SUPPORTED DURIN ATION TO ASSURE THAT THE LEA TIC RING GUIDELINES ARE AS FOLL IO S MAX OR 260°C PEAK FOR K, CL=20pf OWED ONLY IF FULL LENGTH OF AD REFERENCE DIMENSIONS DO N SS RS TO THE LOCATION OF LEAD C CKAGE IONS NOT SHOWN IN LEAD STYLE ONS OF BASIC LISTING AND PAC PACK PER EIA-468-A-1990 ND REEL PER EIA-468-A-1990 ND REEL PER EIA-468-A-1986 =20mA, -40°C <t<150°c, b="">MAX OF k=20mA, B>MAX OP GAUSS FOR SP e:24V, B<min for<br="" gauss="" release="">E "T2" AND "T3". 24 SWITCHE AT FOLD. MAY BE REFERRED TO</min></t<150°c,>	SUMES THE RNAL FLUX OF A LE OF THE MAGNET) RED TO CAUSE THE SE) WILL BE AS SPECIFIED LIMITS, NETIC FIELD IMITS THE DEVICE TO THE DEVICE. ARE NOT GUARANTEED EXCEEDED NOR WILL TE MAXIMUM RATINGS =20pf NG ANY FORMING/ ADS ARE NOT STRESSED .OWS: 5S MAX LEADS WILL PASS THROUGH NOT INCLUDE SOLDER SENTERLINES AS THEY EXIT "S" AND "SP" SKING OPTIONS ARE NOT AVAILABLE PP GAUSS FOR SPECIFIC LISTING PECIFIC LISTING SPECIFIC LISTING SPECIFIC LISTING SOME UNITS BY BULK PACKAGING. GHTNESS REQUIREMENT SHOULD SH. FLASH IS LIMITED TO L OUPUT IN EITHER THE ON OR ETIC FIELD IN THE DIFFERENTIAL . MICRO SWITCH RECOMMENDS IO MICROSECONDS AFTER SUPPLY
	ELECTR SENS DEVI Do NOT OPP		THIRD ANGLE PROJECTION
	M AND IS THE PROPERTY OF MIC		DO NOT SCALE PRINT TOLERANCES APPLY TO DESIGN UNITS. CONVERSIONS ARE ONLY FOR REFERENCE. UNLESS NOTED, TOLERANCES ARE : DIM. TOL mm mm/in mm/in mm/in
	STATE SENSOR	CATALOG LISTING	NO PLACES X 1/.04 X.X 0.8/.03 ONE PLACE X,X 0.4/.016 X.XX 0.8/.03 THO PLACES X,X 0.15/.006 X.XX 0.13/.005 THREE PLACES X,XX 0.15/.006 X.XXX 0.13/.005 ANGLES SI METRIC US CUSTOMARY DESIGN UNITS X X X WEIGHT X X X

THIS DRAWING COVERS A PROPRIETARY ITEM AND IS THE PROPERTY OF MICRO SWITCH. A DIVISION OF HONEYWELL. THIS DRAWING IS NOT TO BE COPIED OR USED WITHOUT THE APPROVAL OF MICRO SWITCH

LEAD & PACKAGING OPTIONS: POCKET TAPE & REEL

	NOMINAL	NOMINAL	
	LEAD	"E" DIM	PARTS PER
T I ON	SPACING	LENGTH	CONTAINER
		\pm 015	
D, BULK PACK /9\	.050	.590	1000/BAG
AMMOPACK	.100	.590	5000/BOX
AMMOPACK	.050	.590	5000/BOX
MOUNT, BULK PACK	.050	.125	1000/BAG
MOUNT, POCKET TAPE	.050	.125	IOOO/REEL
LENGTH, BULK PACK	.050	. 30	1000/BAG
LENGTH, POCKET TAPE	.050	. 30	IOOO/REEL
ADS, BULK PACK	.050	.735	1000/BAG

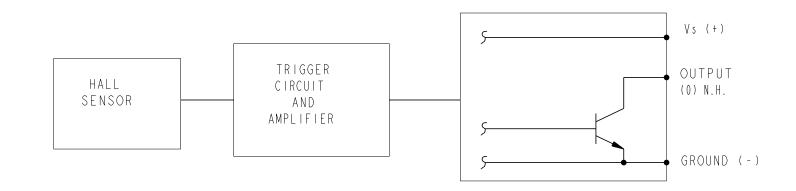

THIRD ANGLE	PROJECT	ION
scale NONE	-	
DO NOT SC.	ALE PRIN	Т
UNLESS OTHERW TOLERA	ISE SPEC	
ONE PLACE	(.0)	±.030
TWO PLACE	(.00)	<u>+</u> .015
THREE PLACE	(.000)	±.005
ANGLES		Ŧ
WEIGHT		

AICROSVAFICH a Honeywell Division

FED. MFG. CODE 91929

SOLID STATE SENSOR SS400 SERIES CHART

THIS DRAWING COVERS A PROPRIETARY ITEM A HONEYWELL. THIS DRAWING IS NOT TO BE CO



3D

PTC/CAD

TABLE I - MAGNETIC AND ELECTRICAL SPECIFICATIONS $2\sqrt{21}$

	-40°C	0°C	25°C	85°C	125°(150°(
MIN OPERATE GAUSS						
SS4IIA	NS	NS	NS	NS	NS	NS
SS4I3A	NS	NS	NS	NS	NS	NS
SS44IA	50	53	55	45	40	35
S S 4 4 3 A	110	110	110	90	80	65
S S 4 4 9 A	285	305	310	290	270	260
SS46IA	5	5	10	10	5	5
S S 4 6 6 A	100	100	100	95	80	70
MAX OPERATE GAUSS	7.0	0.5				7.0
SS4IIA	70	65	60	60	65	70
SS413A	40	140	40	40	40	40
SS44IA	135	117	115	120	123	125
SS443A	215	190	180	180	190	200
SS449A	435	400	390	400	4 0	420
SS46IA	110	90	85	85	100	0
SS466A	200	185	180	180	180	185
MIN RELEASE GAUSS						
SS4IIA	- 70	-65	-60	- 6 0	-65	- 70
SS4I3A	- 40	- 40	- 40	- 40	- 40	- 40
SS44IA	20	20	20	15	15	10
SS443A	80	80	75	70	60	55
SS449A	210	230	235	215	200	185
SS461A	-110	- 90	-85	-85	- 100	- 0
SS466A	- 200	- 185	- 180	- 180	- 1 0 0	- 185
004007	200	105	100	100	100	100
MAX RELEASE GAUSS						
SS4IIA	NS	NS	NS	NS	NS	NS
<u>SS4 3A</u>	NS	NS	NS	NS	NS	NS
SS44IA	120	99	95	105	115	120
S S 4 4 3 A	190	165	155	165	180	195
SS449A	360	325	315	325	340	345
SS46IA	- 5	- 5	- 0	- 10	- 5	- 5
SS466A	- 0 0	- 0 0	- 0 0	-95	- 80	-70
MIN DIFF GAUSS						+
SS4IIA	15	15	15	12	12	10
SS413A	20	20	20	20	20	20
SS441A	15	15	20	15	8	5
SS441A SS443A			25	15	10	5
	25	25			30	30
SS449A	30	30	30	30		
SS46IA	50	50	50	50	50	50
SS466A	200	200	200	190	160	40

TABLE 2

CATALOG LISTING

PACKING BAG SPECIFIED VOLTAGE RANGE 3.8 - 30 MAX loff milliamp 15 9.0 MAX lon milliamp /15 10.0 RATED SINK CURRENT Ma 20 MAX Vsat VOLTS /16 0.4 MAX LEAKAGE AT 24V, UA /17\ 10 RISE TIME AT 25°C_ 1.5 FALL TIME AT 25 90% TO 10% MS /4 1.5 STORAGE TEMP ° -65 TO +160 OPERATING TEMP ° -55 TO +160

ABS	OLUTE	LIMITS	$\int_{\mathbb{R}}$		r a b l e	3
SUPP	LY VOLT	AGE		-	TO +3	30
APPL	ED OUT	PUT				
VOLT	AGE			- 0	.5 TO	+30
OUTP	UT CURF	RENT mA		SE	e table	E 5
MAGN [ETIC FL	UX GAUSS		NO	LIMIT	

TABLE 4

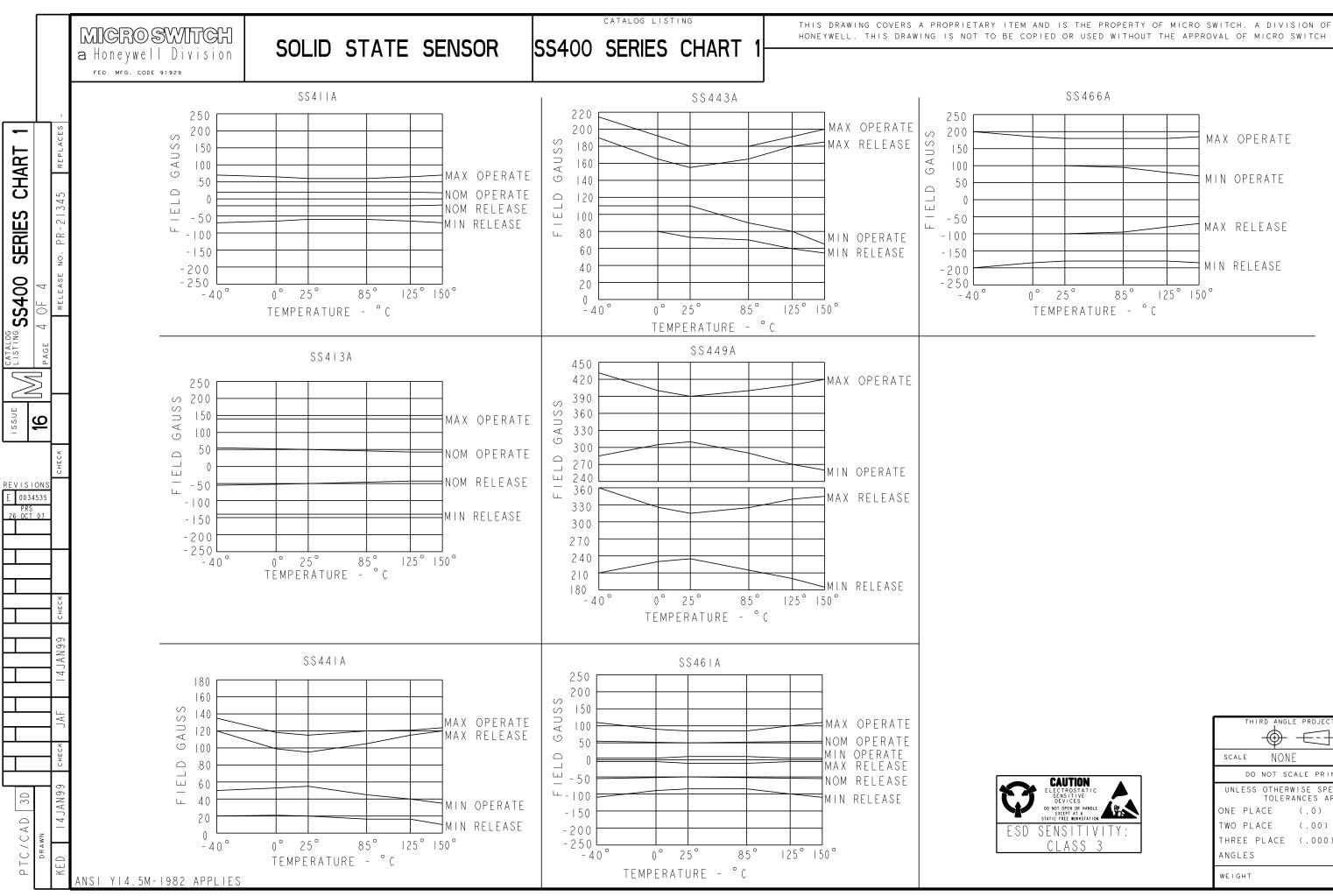

CATALOG LISTING	MAGNETIC TYPE	BRAND SYMBOL
SS4IIA	BIPOLAR	LIA
SS4I3A	BIPOLAR	I 3 A
S S 4 4 A	UNIPOLAR	4 A
S S 4 4 3 A	UNIPOLAR	4 3 A
S S 4 4 9 A	UNIPOLAR	4 9 A
S S 4 6 I A	LATCH	6 I A
S S 4 6 6 A	LATCH	6 6 A

TABLE 5

OUTPUT CURRENT						
ABSOLUTE	e limits					
	OUTPUT					
SUPPLY	CURRENT					
VOLTAGE	MAX, MA					
-I TO 24	50					
24 TO 25	37					
25 TO 26	33					
26 TO 27	28					
27 TO 28	2 4					
28 TO 29	19					
29 TO 30	Ι5					

AND	IS	THE	PR	OPER	ΤY	OF	ΜI	CRO	SWITC	СН.	А	DIVI	SION	OF
DPIED	OF	R USE	D	WITHG	τυс	Τŀ	ΙE	APPF	ROVAL	OF	ΜI	CRO	SWITC	н

THIRD ANG		
		ION
\square	++	
scale NON	E	
DO NOT SC	ALE PRIN	Т
UNLESS OTHER TOLER	NISE SPEC ANCES ARI	
ONE PLACE	(.0)	±.030
TWO PLACE	(.00)	±.0 5
THREE PLACE	(.000)	±.005
ANGLES		ŧ
WEIGHT		

THIRD ANGLE PROJECTION							
Ψ							
scale NON	-						
DO NOT SC	ALE PRIN	г					
UNLESS OTHERV TOLER	VISE SPEC ANCES ARE	· · · 					
ONE PLACE	(.0)	±.030					
TWO PLACE	(.00)	<u>+</u> .0 5					
THREE PLACE	(.000)	±.005					
ANGLES		Ŧ					
WEIGHT							